diff --git a/sklearn/cluster/_affinity_propagation.py b/sklearn/cluster/_affinity_propagation.py index 33bbcb77ff09a..677421974bdc0 100644 --- a/sklearn/cluster/_affinity_propagation.py +++ b/sklearn/cluster/_affinity_propagation.py @@ -258,8 +258,10 @@ def affinity_propagation( Notes ----- - For an example, see :ref:`examples/cluster/plot_affinity_propagation.py - `. + For an example usage, + see :ref:`sphx_glr_auto_examples_cluster_plot_affinity_propagation.py`. + You may also check out, + :ref:`sphx_glr_auto_examples_applications_plot_stock_market.py` When the algorithm does not converge, it will still return a arrays of ``cluster_center_indices`` and labels if there are any exemplars/clusters, @@ -396,8 +398,8 @@ class AffinityPropagation(ClusterMixin, BaseEstimator): Notes ----- - For an example, see :ref:`examples/cluster/plot_affinity_propagation.py - `. + For an example usage, + see :ref:`sphx_glr_auto_examples_cluster_plot_affinity_propagation.py`. The algorithmic complexity of affinity propagation is quadratic in the number of points. diff --git a/sklearn/cluster/_dbscan.py b/sklearn/cluster/_dbscan.py index 903b6befaddb6..7764bff94582f 100644 --- a/sklearn/cluster/_dbscan.py +++ b/sklearn/cluster/_dbscan.py @@ -277,8 +277,8 @@ class DBSCAN(ClusterMixin, BaseEstimator): Notes ----- - For an example, see :ref:`examples/cluster/plot_dbscan.py - `. + For an example, see + :ref:`sphx_glr_auto_examples_cluster_plot_dbscan.py`. This implementation bulk-computes all neighborhood queries, which increases the memory complexity to O(n.d) where d is the average number of neighbors,