diff --git a/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py b/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py index 24d8a55df4f7d..38ff9a7ba3ba2 100644 --- a/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py +++ b/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py @@ -1579,7 +1579,7 @@ class HistGradientBoostingRegressor(RegressorMixin, BaseHistGradientBoosting): scoring : str or callable or None, default='loss' Scoring parameter to use for early stopping. It can be a single string (see :ref:`scoring_parameter`) or a callable (see - :ref:`scoring`). If None, the estimator's default scorer is used. If + :ref:`scoring_callable`). If None, the estimator's default scorer is used. If ``scoring='loss'``, early stopping is checked w.r.t the loss value. Only used if early stopping is performed. validation_fraction : int or float or None, default=0.1 @@ -1961,7 +1961,7 @@ class HistGradientBoostingClassifier(ClassifierMixin, BaseHistGradientBoosting): scoring : str or callable or None, default='loss' Scoring parameter to use for early stopping. It can be a single string (see :ref:`scoring_parameter`) or a callable (see - :ref:`scoring`). If None, the estimator's default scorer + :ref:`scoring_callable`). If None, the estimator's default scorer is used. If ``scoring='loss'``, early stopping is checked w.r.t the loss value. Only used if early stopping is performed. validation_fraction : int or float or None, default=0.1