diff --git a/sklearn/linear_model/_coordinate_descent.py b/sklearn/linear_model/_coordinate_descent.py index b98cf08925910..d2fd1fe257838 100644 --- a/sklearn/linear_model/_coordinate_descent.py +++ b/sklearn/linear_model/_coordinate_descent.py @@ -848,7 +848,7 @@ class ElasticNet(MultiOutputMixin, RegressorMixin, LinearModel): SGDRegressor : Implements elastic net regression with incremental training. SGDClassifier : Implements logistic regression with elastic net penalty (``SGDClassifier(loss="log_loss", penalty="elasticnet")``). - + Notes ----- To avoid unnecessary memory duplication the X argument of the fit method @@ -859,7 +859,10 @@ class ElasticNet(MultiOutputMixin, RegressorMixin, LinearModel): is smaller than `tol` times the maximum absolute coefficient, :math:`\\max_j |w_j|`. If so, then additionally check whether the dual gap is smaller than `tol` times :math:`||y||_2^2 / n_{\text{samples}}`. - + + For an example showcasing Elastic-Net alongside Lasso and ARDRegression for sparse + signal recovery in the presence of noise and feature correlation, see: + :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_and_elasticnet.py`. Examples -------- >>> from sklearn.linear_model import ElasticNet @@ -1264,6 +1267,10 @@ class Lasso(ElasticNet): LassoCV : Lasso alpha parameter by cross-validation. LassoLarsCV : Lasso least angle parameter algorithm by cross-validation. sklearn.decomposition.sparse_encode : Sparse coding array estimator. + + For an example comparing Lasso with other L1-based regression models + (Elastic-Net and ARDRegression) on sparse and noisy data, see: + :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_and_elasticnet.py`. Notes -----