diff --git a/0.24/_sources/auto_examples/svm/plot_svm_anova.rst.txt b/0.24/_sources/auto_examples/svm/plot_svm_anova.rst.txt index 40a95c326a58e..7b1683320335b 100644 --- a/0.24/_sources/auto_examples/svm/plot_svm_anova.rst.txt +++ b/0.24/_sources/auto_examples/svm/plot_svm_anova.rst.txt @@ -62,7 +62,7 @@ that our model achieves best performance when we select around 10% of features. # ############################################################################# # Create a feature-selection transform, a scaler and an instance of SVM that we - # combine together to have an full-blown estimator + # combine together to have a full-blown estimator clf = Pipeline([('anova', SelectPercentile(chi2)), ('scaler', StandardScaler()), ('svc', SVC(gamma="auto"))])