@@ -786,10 +786,9 @@ class ElasticNet(MultiOutputMixin, RegressorMixin, LinearModel):
786
786
If ``True``, X will be copied; else, it may be overwritten.
787
787
788
788
tol : float, default=1e-4
789
- The tolerance for the optimization: if the updates are
790
- smaller than ``tol``, the optimization code checks the
791
- dual gap for optimality and continues until it is smaller
792
- than ``tol``, see Notes below.
789
+ The tolerance for the optimization: if the updates are smaller or equal to
790
+ ``tol``, the optimization code checks the dual gap for optimality and continues
791
+ until it is smaller or equal to ``tol``, see Notes below.
793
792
794
793
warm_start : bool, default=False
795
794
When set to ``True``, reuse the solution of the previous call to fit as
@@ -857,9 +856,9 @@ class ElasticNet(MultiOutputMixin, RegressorMixin, LinearModel):
857
856
858
857
The precise stopping criteria based on `tol` are the following: First, check that
859
858
that maximum coordinate update, i.e. :math:`\\ max_j |w_j^{new} - w_j^{old}|`
860
- is smaller than `tol` times the maximum absolute coefficient, :math:` \\ max_j |w_j|`.
861
- If so, then additionally check whether the dual gap is smaller than `tol` times
862
- :math:`||y||_2^2 / n_{\t ext{samples}}`.
859
+ is smaller or equal to `tol` times the maximum absolute coefficient,
860
+ :math:` \\ max_j |w_j|`. If so, then additionally check whether the dual gap is
861
+ smaller or equal to `tol` times :math:`||y||_2^2 / n_{\ \ text{samples}}`.
863
862
864
863
Examples
865
864
--------
@@ -1205,13 +1204,12 @@ class Lasso(ElasticNet):
1205
1204
The maximum number of iterations.
1206
1205
1207
1206
tol : float, default=1e-4
1208
- The tolerance for the optimization: if the updates are
1209
- smaller than ``tol``, the optimization code checks the
1210
- dual gap for optimality and continues until it is smaller
1211
- than ``tol``, see Notes below.
1207
+ The tolerance for the optimization: if the updates are smaller or equal to
1208
+ ``tol``, the optimization code checks the dual gap for optimality and continues
1209
+ until it is smaller or equal to ``tol``, see Notes below.
1212
1210
1213
1211
warm_start : bool, default=False
1214
- When set to True, reuse the solution of the previous call to fit as
1212
+ When set to `` True`` , reuse the solution of the previous call to fit as
1215
1213
initialization, otherwise, just erase the previous solution.
1216
1214
See :term:`the Glossary <warm_start>`.
1217
1215
@@ -1285,9 +1283,9 @@ class Lasso(ElasticNet):
1285
1283
1286
1284
The precise stopping criteria based on `tol` are the following: First, check that
1287
1285
that maximum coordinate update, i.e. :math:`\\ max_j |w_j^{new} - w_j^{old}|`
1288
- is smaller than `tol` times the maximum absolute coefficient, :math:` \\ max_j |w_j|`.
1289
- If so, then additionally check whether the dual gap is smaller than `tol` times
1290
- :math:`||y||_2^2 / n_{\\ text{samples}}`.
1286
+ is smaller or equal to `tol` times the maximum absolute coefficient,
1287
+ :math:` \\ max_j |w_j|`. If so, then additionally check whether the dual gap is
1288
+ smaller or equal to `tol` times :math:`||y||_2^2 / n_{\\ text{samples}}`.
1291
1289
1292
1290
The target can be a 2-dimensional array, resulting in the optimization of the
1293
1291
following objective::
@@ -1981,10 +1979,9 @@ class LassoCV(RegressorMixin, LinearModelCV):
1981
1979
The maximum number of iterations.
1982
1980
1983
1981
tol : float, default=1e-4
1984
- The tolerance for the optimization: if the updates are
1985
- smaller than ``tol``, the optimization code checks the
1986
- dual gap for optimality and continues until it is smaller
1987
- than ``tol``.
1982
+ The tolerance for the optimization: if the updates are smaller or equal to
1983
+ ``tol``, the optimization code checks the dual gap for optimality and continues
1984
+ until it is smaller or equal to ``tol``.
1988
1985
1989
1986
copy_X : bool, default=True
1990
1987
If ``True``, X will be copied; else, it may be overwritten.
@@ -2252,10 +2249,9 @@ class ElasticNetCV(RegressorMixin, LinearModelCV):
2252
2249
The maximum number of iterations.
2253
2250
2254
2251
tol : float, default=1e-4
2255
- The tolerance for the optimization: if the updates are
2256
- smaller than ``tol``, the optimization code checks the
2257
- dual gap for optimality and continues until it is smaller
2258
- than ``tol``.
2252
+ The tolerance for the optimization: if the updates are smaller or equal to
2253
+ ``tol``, the optimization code checks the dual gap for optimality and continues
2254
+ until it is smaller or equal to ``tol``.
2259
2255
2260
2256
cv : int, cross-validation generator or iterable, default=None
2261
2257
Determines the cross-validation splitting strategy.
@@ -2525,10 +2521,9 @@ class MultiTaskElasticNet(Lasso):
2525
2521
The maximum number of iterations.
2526
2522
2527
2523
tol : float, default=1e-4
2528
- The tolerance for the optimization: if the updates are
2529
- smaller than ``tol``, the optimization code checks the
2530
- dual gap for optimality and continues until it is smaller
2531
- than ``tol``.
2524
+ The tolerance for the optimization: if the updates are smaller or equal to
2525
+ ``tol``, the optimization code checks the dual gap for optimality and continues
2526
+ until it is smaller or equal to ``tol``.
2532
2527
2533
2528
warm_start : bool, default=False
2534
2529
When set to ``True``, reuse the solution of the previous call to fit as
@@ -2770,10 +2765,9 @@ class MultiTaskLasso(MultiTaskElasticNet):
2770
2765
The maximum number of iterations.
2771
2766
2772
2767
tol : float, default=1e-4
2773
- The tolerance for the optimization: if the updates are
2774
- smaller than ``tol``, the optimization code checks the
2775
- dual gap for optimality and continues until it is smaller
2776
- than ``tol``.
2768
+ The tolerance for the optimization: if the updates are smaller or equal to
2769
+ ``tol``, the optimization code checks the dual gap for optimality and continues
2770
+ until it is smaller or equal to ``tol``.
2777
2771
2778
2772
warm_start : bool, default=False
2779
2773
When set to ``True``, reuse the solution of the previous call to fit as
@@ -2949,10 +2943,9 @@ class MultiTaskElasticNetCV(RegressorMixin, LinearModelCV):
2949
2943
The maximum number of iterations.
2950
2944
2951
2945
tol : float, default=1e-4
2952
- The tolerance for the optimization: if the updates are
2953
- smaller than ``tol``, the optimization code checks the
2954
- dual gap for optimality and continues until it is smaller
2955
- than ``tol``.
2946
+ The tolerance for the optimization: if the updates are smaller or equal to
2947
+ ``tol``, the optimization code checks the dual gap for optimality and continues
2948
+ until it is smaller or equal to ``tol``.
2956
2949
2957
2950
cv : int, cross-validation generator or iterable, default=None
2958
2951
Determines the cross-validation splitting strategy.
@@ -3205,10 +3198,9 @@ class MultiTaskLassoCV(RegressorMixin, LinearModelCV):
3205
3198
The maximum number of iterations.
3206
3199
3207
3200
tol : float, default=1e-4
3208
- The tolerance for the optimization: if the updates are
3209
- smaller than ``tol``, the optimization code checks the
3210
- dual gap for optimality and continues until it is smaller
3211
- than ``tol``.
3201
+ The tolerance for the optimization: if the updates are smaller or equal to
3202
+ ``tol``, the optimization code checks the dual gap for optimality and continues
3203
+ until it is smaller or equal to ``tol``.
3212
3204
3213
3205
copy_X : bool, default=True
3214
3206
If ``True``, X will be copied; else, it may be overwritten.
0 commit comments