Skip to content

Commit a86b32d

Browse files
authored
ENH use np.cumsum directly instead of stable_cumsum for LLE (scikit-learn#31996)
1 parent 74142b3 commit a86b32d

File tree

1 file changed

+1
-2
lines changed

1 file changed

+1
-2
lines changed

sklearn/manifold/_locally_linear.py

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,6 @@
2121
from sklearn.utils import check_array, check_random_state
2222
from sklearn.utils._arpack import _init_arpack_v0
2323
from sklearn.utils._param_validation import Interval, StrOptions, validate_params
24-
from sklearn.utils.extmath import stable_cumsum
2524
from sklearn.utils.validation import FLOAT_DTYPES, check_is_fitted, validate_data
2625

2726

@@ -351,7 +350,7 @@ def _locally_linear_embedding(
351350
# this is the size of the largest set of eigenvalues
352351
# such that Sum[v; v in set]/Sum[v; v not in set] < eta
353352
s_range = np.zeros(N, dtype=int)
354-
evals_cumsum = stable_cumsum(evals, 1)
353+
evals_cumsum = np.cumsum(evals, 1)
355354
eta_range = evals_cumsum[:, -1:] / evals_cumsum[:, :-1] - 1
356355
for i in range(N):
357356
s_range[i] = np.searchsorted(eta_range[i, ::-1], eta)

0 commit comments

Comments
 (0)