You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Multi-labels problems with a lot of labels are a good use case of metric learning, so we could add support for it in the algorithms. In supervised ones it would mean modifying the loss function a bit (we have been discussing it with @bellet for NCA's PR in scikit-learn for instance)
For weakly supervised ones it would mean make tuples from multi-labeled data (it seems that there are several strategies to do so, like how much labels do points share, etc...)