|
8 | 8 | from onnx_array_api.ext_test_case import ExtTestCase
|
9 | 9 | from onnx_array_api.light_api import start
|
10 | 10 | from onnx_array_api.graph_api import GraphBuilder
|
11 |
| -from onnx_array_api.translate_api import translate |
| 11 | +from onnx_array_api.translate_api import translate, Translater |
| 12 | +from onnx_array_api.translate_api.builder_emitter import BuilderEmitter |
12 | 13 |
|
13 | 14 |
|
14 | 15 | OPSET_API = min(19, onnx_opset_version() - 1)
|
@@ -38,7 +39,7 @@ def light_api(
|
38 | 39 | op.Identity(Y, outputs=["Y"])
|
39 | 40 | return Y
|
40 | 41 |
|
41 |
| - g = GraphBuilder({'': 19}) |
| 42 | + g = GraphBuilder({'': 19}, ir_version=11) |
42 | 43 | g.make_tensor_input("X", TensorProto.FLOAT, ())
|
43 | 44 | light_api(g.op, "X")
|
44 | 45 | g.make_tensor_output("Y", TensorProto.FLOAT, ())
|
@@ -89,7 +90,7 @@ def light_api(
|
89 | 90 | op.Identity(Y, outputs=["Y"])
|
90 | 91 | return Y
|
91 | 92 |
|
92 |
| - g = GraphBuilder({'': 19}) |
| 93 | + g = GraphBuilder({'': 19}, ir_version=11) |
93 | 94 | g.make_tensor_input("X", TensorProto.FLOAT, ())
|
94 | 95 | light_api(g.op, "X")
|
95 | 96 | g.make_tensor_output("Y", TensorProto.FLOAT, ())
|
@@ -117,6 +118,62 @@ def light_api(
|
117 | 118 | self.assertNotEmpty(model)
|
118 | 119 | check_model(model)
|
119 | 120 |
|
| 121 | + def test_exp_f(self): |
| 122 | + onx = start(opset=19).vin("X").Exp().rename("Y").vout().to_onnx() |
| 123 | + self.assertIsInstance(onx, ModelProto) |
| 124 | + self.assertIn("Exp", str(onx)) |
| 125 | + ref = ReferenceEvaluator(onx) |
| 126 | + a = np.arange(10).astype(np.float32) |
| 127 | + got = ref.run(None, {"X": a})[0] |
| 128 | + self.assertEqualArray(np.exp(a), got) |
| 129 | + |
| 130 | + tr = Translater(onx, emitter=BuilderEmitter("mm")) |
| 131 | + code = tr.export(as_str=True) |
| 132 | + |
| 133 | + expected = dedent( |
| 134 | + """ |
| 135 | + def light_api( |
| 136 | + op: "GraphBuilder", |
| 137 | + X: "FLOAT[]", |
| 138 | + ): |
| 139 | + Y = op.Exp(X) |
| 140 | + op.Identity(Y, outputs=["Y"]) |
| 141 | + return Y |
| 142 | +
|
| 143 | +
|
| 144 | + def mm() -> "ModelProto": |
| 145 | + g = GraphBuilder({'': 19}, ir_version=11) |
| 146 | + g.make_tensor_input("X", TensorProto.FLOAT, ()) |
| 147 | + light_api(g.op, "X") |
| 148 | + g.make_tensor_output("Y", TensorProto.FLOAT, ()) |
| 149 | + model = g.to_onnx() |
| 150 | + return model |
| 151 | +
|
| 152 | +
|
| 153 | + model = mm() |
| 154 | + """ |
| 155 | + ).strip("\n") |
| 156 | + self.assertEqual(expected, code.strip("\n")) |
| 157 | + |
| 158 | + def light_api( |
| 159 | + op: "GraphBuilder", |
| 160 | + X: "FLOAT[]", # noqa: F722 |
| 161 | + ): |
| 162 | + Y = op.Exp(X) |
| 163 | + op.Identity(Y, outputs=["Y"]) |
| 164 | + return Y |
| 165 | + |
| 166 | + g2 = GraphBuilder({"": 19}) |
| 167 | + g2.make_tensor_input("X", TensorProto.FLOAT, ("A",)) |
| 168 | + light_api(g2.op, "X") |
| 169 | + g2.make_tensor_output("Y", TensorProto.FLOAT, ("A",)) |
| 170 | + onx2 = g2.to_onnx() |
| 171 | + |
| 172 | + ref = ReferenceEvaluator(onx2) |
| 173 | + a = np.arange(10).astype(np.float32) |
| 174 | + got = ref.run(None, {"X": a})[0] |
| 175 | + self.assertEqualArray(np.exp(a), got) |
| 176 | + |
120 | 177 |
|
121 | 178 | if __name__ == "__main__":
|
122 | 179 | unittest.main(verbosity=2)
|
0 commit comments