@@ -2112,14 +2112,6 @@ class RandomTreesEmbedding(BaseForest):
2112
2112
and add more estimators to the ensemble, otherwise, just fit a whole
2113
2113
new forest. See :term:`the Glossary <warm_start>`.
2114
2114
2115
- ccp_alpha : non-negative float, optional (default=0.0)
2116
- Complexity parameter used for Minimal Cost-Complexity Pruning. The
2117
- subtree with the largest cost complexity that is smaller than
2118
- ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
2119
- :ref:`minimal_cost_complexity_pruning` for details.
2120
-
2121
- .. versionadded:: 0.22
2122
-
2123
2115
max_samples : int or float, default=None
2124
2116
If bootstrap is True, the number of samples to draw from X
2125
2117
to train each base estimator.
@@ -2163,7 +2155,6 @@ def __init__(self,
2163
2155
random_state = None ,
2164
2156
verbose = 0 ,
2165
2157
warm_start = False ,
2166
- ccp_alpha = 0.0 ,
2167
2158
max_samples = None ):
2168
2159
super ().__init__ (
2169
2160
base_estimator = ExtraTreeRegressor (),
@@ -2172,7 +2163,7 @@ def __init__(self,
2172
2163
"min_samples_leaf" , "min_weight_fraction_leaf" ,
2173
2164
"max_features" , "max_leaf_nodes" ,
2174
2165
"min_impurity_decrease" , "min_impurity_split" ,
2175
- "random_state" , "ccp_alpha" ),
2166
+ "random_state" ),
2176
2167
bootstrap = False ,
2177
2168
oob_score = False ,
2178
2169
n_jobs = n_jobs ,
@@ -2189,7 +2180,6 @@ def __init__(self,
2189
2180
self .min_impurity_decrease = min_impurity_decrease
2190
2181
self .min_impurity_split = min_impurity_split
2191
2182
self .sparse_output = sparse_output
2192
- self .ccp_alpha = ccp_alpha
2193
2183
2194
2184
def _set_oob_score (self , X , y ):
2195
2185
raise NotImplementedError ("OOB score not supported by tree embedding" )
0 commit comments