Skip to content

Commit ca7fc5d

Browse files
authored
DOC Add URL to reference of Minka paper used in PCA (scikit-learn#19207)
1 parent 315463f commit ca7fc5d

File tree

1 file changed

+18
-12
lines changed

1 file changed

+18
-12
lines changed

sklearn/decomposition/_pca.py

Lines changed: 18 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -32,7 +32,8 @@ def _assess_dimension(spectrum, rank, n_samples):
3232
"""Compute the log-likelihood of a rank ``rank`` dataset.
3333
3434
The dataset is assumed to be embedded in gaussian noise of shape(n,
35-
dimf) having spectrum ``spectrum``.
35+
dimf) having spectrum ``spectrum``. This implements the method of
36+
T. P. Minka.
3637
3738
Parameters
3839
----------
@@ -50,10 +51,11 @@ def _assess_dimension(spectrum, rank, n_samples):
5051
ll : float
5152
The log-likelihood.
5253
53-
Notes
54-
-----
54+
References
55+
----------
5556
This implements the method of `Thomas P. Minka:
56-
Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604`
57+
Automatic Choice of Dimensionality for PCA. NIPS 2000: 598-604
58+
<https://proceedings.neurips.cc/paper/2000/file/7503cfacd12053d309b6bed5c89de212-Paper.pdf>`_
5759
"""
5860

5961
n_features = spectrum.shape[0]
@@ -271,26 +273,30 @@ class PCA(_BasePCA):
271273
272274
References
273275
----------
274-
For n_components == 'mle', this class uses the method of *Minka, T. P.
275-
"Automatic choice of dimensionality for PCA". In NIPS, pp. 598-604*
276+
For n_components == 'mle', this class uses the method from:
277+
`Minka, T. P.. "Automatic choice of dimensionality for PCA".
278+
In NIPS, pp. 598-604 <https://tminka.github.io/papers/pca/minka-pca.pdf>`_
276279
277280
Implements the probabilistic PCA model from:
278-
Tipping, M. E., and Bishop, C. M. (1999). "Probabilistic principal
281+
`Tipping, M. E., and Bishop, C. M. (1999). "Probabilistic principal
279282
component analysis". Journal of the Royal Statistical Society:
280283
Series B (Statistical Methodology), 61(3), 611-622.
284+
<http://www.miketipping.com/papers/met-mppca.pdf>`_
281285
via the score and score_samples methods.
282-
See http://www.miketipping.com/papers/met-mppca.pdf
283286
284287
For svd_solver == 'arpack', refer to `scipy.sparse.linalg.svds`.
285288
286289
For svd_solver == 'randomized', see:
287-
*Halko, N., Martinsson, P. G., and Tropp, J. A. (2011).
290+
`Halko, N., Martinsson, P. G., and Tropp, J. A. (2011).
288291
"Finding structure with randomness: Probabilistic algorithms for
289292
constructing approximate matrix decompositions".
290-
SIAM review, 53(2), 217-288.* and also
291-
*Martinsson, P. G., Rokhlin, V., and Tygert, M. (2011).
293+
SIAM review, 53(2), 217-288.
294+
<https://doi.org/10.1137/090771806>`_
295+
and also
296+
`Martinsson, P. G., Rokhlin, V., and Tygert, M. (2011).
292297
"A randomized algorithm for the decomposition of matrices".
293-
Applied and Computational Harmonic Analysis, 30(1), 47-68.*
298+
Applied and Computational Harmonic Analysis, 30(1), 47-68
299+
<https://doi.org/10.1016/j.acha.2010.02.003>`_.
294300
295301
Examples
296302
--------

0 commit comments

Comments
 (0)