|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": { |
| 7 | + "id": "NNamP65y8eGf" |
| 8 | + }, |
| 9 | + "outputs": [], |
| 10 | + "source": [ |
| 11 | + "from sklearn import datasets\n", |
| 12 | + "from sklearn.discriminant_analysis import LinearDiscriminantAnalysis\n", |
| 13 | + "from sklearn.decomposition import PCA, KernelPCA\n", |
| 14 | + "from sklearn.datasets import make_circles\n", |
| 15 | + "from sklearn.preprocessing import StandardScaler\n", |
| 16 | + "from sklearn.decomposition import NMF\n", |
| 17 | + "from sklearn.decomposition import TruncatedSVD\n", |
| 18 | + "from scipy.sparse import csr_matrix" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "code", |
| 23 | + "execution_count": 2, |
| 24 | + "metadata": { |
| 25 | + "colab": { |
| 26 | + "base_uri": "https://localhost:8080/" |
| 27 | + }, |
| 28 | + "id": "fvJfKhFq8hQc", |
| 29 | + "outputId": "acbc4c59-acbd-4ff4-bacb-e54b55e0312f" |
| 30 | + }, |
| 31 | + "outputs": [ |
| 32 | + { |
| 33 | + "name": "stdout", |
| 34 | + "output_type": "stream", |
| 35 | + "text": [ |
| 36 | + "Original number of features: 64\n", |
| 37 | + "Reduced number of features: 40\n" |
| 38 | + ] |
| 39 | + } |
| 40 | + ], |
| 41 | + "source": [ |
| 42 | + "# Load the data\n", |
| 43 | + "digits = datasets.load_digits()\n", |
| 44 | + "# Feature matrix standardization\n", |
| 45 | + "features = StandardScaler().fit_transform(digits.data)\n", |
| 46 | + "# Perform PCA While retaining 80% of variance\n", |
| 47 | + "pca = PCA(n_components=0.95, whiten=True)\n", |
| 48 | + "# perform PCA\n", |
| 49 | + "pcafeatures = pca.fit_transform(features)\n", |
| 50 | + "# Display results\n", |
| 51 | + "print(\"Original number of features:\", features.shape[1])\n", |
| 52 | + "print(\"Reduced number of features:\", pcafeatures.shape[1])" |
| 53 | + ] |
| 54 | + }, |
| 55 | + { |
| 56 | + "cell_type": "code", |
| 57 | + "execution_count": 3, |
| 58 | + "metadata": { |
| 59 | + "colab": { |
| 60 | + "base_uri": "https://localhost:8080/" |
| 61 | + }, |
| 62 | + "id": "jyU800Lf8it4", |
| 63 | + "outputId": "0d4c73bf-7d08-48e6-a44f-a5647a2e0c11" |
| 64 | + }, |
| 65 | + "outputs": [ |
| 66 | + { |
| 67 | + "name": "stdout", |
| 68 | + "output_type": "stream", |
| 69 | + "text": [ |
| 70 | + "Original number of features: 2\n", |
| 71 | + "Reduced number of features: 1\n" |
| 72 | + ] |
| 73 | + } |
| 74 | + ], |
| 75 | + "source": [ |
| 76 | + "# Creation of the linearly inseparable data\n", |
| 77 | + "features, _ = make_circles(n_samples=2000, random_state=1, noise=0.1, factor=0.1)\n", |
| 78 | + "# kernal PCA with radius basis function (RBF) kernel application\n", |
| 79 | + "k_pca = KernelPCA(kernel=\"rbf\", gamma=16, n_components=1)\n", |
| 80 | + "k_pcaf = k_pca.fit_transform(features)\n", |
| 81 | + "print(\"Original number of features:\", features.shape[1])\n", |
| 82 | + "print(\"Reduced number of features:\", k_pcaf.shape[1])" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | + "cell_type": "code", |
| 87 | + "execution_count": 4, |
| 88 | + "metadata": { |
| 89 | + "colab": { |
| 90 | + "base_uri": "https://localhost:8080/" |
| 91 | + }, |
| 92 | + "id": "IfCo5TA28kn6", |
| 93 | + "outputId": "312956a9-9fb5-4296-d766-a3e642649da1" |
| 94 | + }, |
| 95 | + "outputs": [ |
| 96 | + { |
| 97 | + "name": "stdout", |
| 98 | + "output_type": "stream", |
| 99 | + "text": [ |
| 100 | + "number of features(original): 4\n", |
| 101 | + "number of features that was reduced: 1\n" |
| 102 | + ] |
| 103 | + } |
| 104 | + ], |
| 105 | + "source": [ |
| 106 | + "#flower dataset loading:\n", |
| 107 | + "iris = datasets.load_iris()\n", |
| 108 | + "features = iris.data\n", |
| 109 | + "target = iris.target\n", |
| 110 | + "# Creation of LDA. Use of LDA for features transformation\n", |
| 111 | + "lda = LinearDiscriminantAnalysis(n_components=1)\n", |
| 112 | + "features_lda = lda.fit(features, target).transform(features)\n", |
| 113 | + "# Print the number of features\n", |
| 114 | + "print(\"number of features(original):\", features.shape[1])\n", |
| 115 | + "print(\"number of features that was reduced:\", features_lda.shape[1])" |
| 116 | + ] |
| 117 | + }, |
| 118 | + { |
| 119 | + "cell_type": "code", |
| 120 | + "execution_count": 5, |
| 121 | + "metadata": { |
| 122 | + "colab": { |
| 123 | + "base_uri": "https://localhost:8080/" |
| 124 | + }, |
| 125 | + "id": "yjQBlMtM8mQu", |
| 126 | + "outputId": "800279fb-f44b-43e8-9210-a35b8e190fc7" |
| 127 | + }, |
| 128 | + "outputs": [ |
| 129 | + { |
| 130 | + "data": { |
| 131 | + "text/plain": [ |
| 132 | + "array([0.9912126])" |
| 133 | + ] |
| 134 | + }, |
| 135 | + "execution_count": 5, |
| 136 | + "metadata": {}, |
| 137 | + "output_type": "execute_result" |
| 138 | + } |
| 139 | + ], |
| 140 | + "source": [ |
| 141 | + "lda.explained_variance_ratio_" |
| 142 | + ] |
| 143 | + }, |
| 144 | + { |
| 145 | + "cell_type": "code", |
| 146 | + "execution_count": 10, |
| 147 | + "metadata": { |
| 148 | + "colab": { |
| 149 | + "base_uri": "https://localhost:8080/" |
| 150 | + }, |
| 151 | + "id": "tHOWTxn18nf7", |
| 152 | + "outputId": "ae3c857a-0ca8-4508-affc-b5ea4dff6788" |
| 153 | + }, |
| 154 | + "outputs": [ |
| 155 | + { |
| 156 | + "data": { |
| 157 | + "text/plain": [ |
| 158 | + "1" |
| 159 | + ] |
| 160 | + }, |
| 161 | + "execution_count": 10, |
| 162 | + "metadata": {}, |
| 163 | + "output_type": "execute_result" |
| 164 | + } |
| 165 | + ], |
| 166 | + "source": [ |
| 167 | + "# Load Iris flower dataset:\n", |
| 168 | + "iris123 = datasets.load_iris()\n", |
| 169 | + "features = iris123.data\n", |
| 170 | + "target = iris123.target\n", |
| 171 | + "# Create and run LDA\n", |
| 172 | + "lda_r = LinearDiscriminantAnalysis(n_components=None)\n", |
| 173 | + "features_lda = lda_r.fit(features, target)\n", |
| 174 | + "# array of explained variance ratios\n", |
| 175 | + "lda_var_r = lda_r.explained_variance_ratio_\n", |
| 176 | + "# function ceration\n", |
| 177 | + "def select_n_c(v_ratio, g_var: float) -> int:\n", |
| 178 | + " # initial variance explained setting\n", |
| 179 | + " total_v = 0.0\n", |
| 180 | + " # number of features initialisation\n", |
| 181 | + " n_components = 0\n", |
| 182 | + " # If we consider explained variance of each feature:\n", |
| 183 | + " for explained_v in v_ratio:\n", |
| 184 | + " # explained variance addition to the total\n", |
| 185 | + " total_v += explained_v\n", |
| 186 | + " # add one to number of components\n", |
| 187 | + " n_components += 1\n", |
| 188 | + " # we attain our goal level of explained variance\n", |
| 189 | + " if total_v >= g_var:\n", |
| 190 | + " # end the loop\n", |
| 191 | + " break\n", |
| 192 | + " # return the number of components\n", |
| 193 | + " return n_components\n", |
| 194 | + "\n", |
| 195 | + "# run the function\n", |
| 196 | + "select_n_c(lda_var_r, 0.95)" |
| 197 | + ] |
| 198 | + }, |
| 199 | + { |
| 200 | + "cell_type": "code", |
| 201 | + "execution_count": 7, |
| 202 | + "metadata": { |
| 203 | + "colab": { |
| 204 | + "base_uri": "https://localhost:8080/" |
| 205 | + }, |
| 206 | + "id": "12zwY1Du8o6i", |
| 207 | + "outputId": "e9178fdf-2195-41cc-f4c3-a1e52c030df5" |
| 208 | + }, |
| 209 | + "outputs": [ |
| 210 | + { |
| 211 | + "name": "stderr", |
| 212 | + "output_type": "stream", |
| 213 | + "text": [ |
| 214 | + "/usr/local/lib/python3.7/dist-packages/sklearn/decomposition/_nmf.py:294: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).\n", |
| 215 | + " FutureWarning,\n" |
| 216 | + ] |
| 217 | + }, |
| 218 | + { |
| 219 | + "name": "stdout", |
| 220 | + "output_type": "stream", |
| 221 | + "text": [ |
| 222 | + "Original number of features: 64\n", |
| 223 | + "Reduced number of features: 12\n" |
| 224 | + ] |
| 225 | + }, |
| 226 | + { |
| 227 | + "name": "stderr", |
| 228 | + "output_type": "stream", |
| 229 | + "text": [ |
| 230 | + "/usr/local/lib/python3.7/dist-packages/sklearn/decomposition/_nmf.py:1641: ConvergenceWarning: Maximum number of iterations 200 reached. Increase it to improve convergence.\n", |
| 231 | + " ConvergenceWarning,\n" |
| 232 | + ] |
| 233 | + } |
| 234 | + ], |
| 235 | + "source": [ |
| 236 | + "# data loading\n", |
| 237 | + "digit = datasets.load_digits()\n", |
| 238 | + "# feature matrix loading\n", |
| 239 | + "feature_m = digit.data\n", |
| 240 | + "# Creation, fit and application of NMF\n", |
| 241 | + "n_mf = NMF(n_components=12, random_state=1)\n", |
| 242 | + "features_nmf = n_mf.fit_transform(feature_m)\n", |
| 243 | + "# Show results\n", |
| 244 | + "print(\"Original number of features:\", feature_m.shape[1])\n", |
| 245 | + "print(\"Reduced number of features:\", features_nmf.shape[1])" |
| 246 | + ] |
| 247 | + }, |
| 248 | + { |
| 249 | + "cell_type": "code", |
| 250 | + "execution_count": 8, |
| 251 | + "metadata": { |
| 252 | + "colab": { |
| 253 | + "base_uri": "https://localhost:8080/" |
| 254 | + }, |
| 255 | + "id": "wrEYF9Ql8qtU", |
| 256 | + "outputId": "c28d28be-4f0b-4bd7-bb56-fde6ead38a45" |
| 257 | + }, |
| 258 | + "outputs": [ |
| 259 | + { |
| 260 | + "name": "stdout", |
| 261 | + "output_type": "stream", |
| 262 | + "text": [ |
| 263 | + "Original number of features: 64\n", |
| 264 | + "Reduced number of features: 12\n" |
| 265 | + ] |
| 266 | + } |
| 267 | + ], |
| 268 | + "source": [ |
| 269 | + "# data loading\n", |
| 270 | + "digit123 = datasets.load_digits()\n", |
| 271 | + "# feature matrix Standardization\n", |
| 272 | + "features_m = StandardScaler().fit_transform(digit123.data)\n", |
| 273 | + "# sparse matrix creation\n", |
| 274 | + "f_sparse = csr_matrix(features_m)\n", |
| 275 | + "# TSVD creation\n", |
| 276 | + "tsvd = TruncatedSVD(n_components=12)\n", |
| 277 | + "# sparse matrix TSVD\n", |
| 278 | + "features_sp_tsvd = tsvd.fit(f_sparse).transform(f_sparse)\n", |
| 279 | + "# results\n", |
| 280 | + "print(\"Original number of features:\", f_sparse.shape[1])\n", |
| 281 | + "print(\"Reduced number of features:\", features_sp_tsvd.shape[1])" |
| 282 | + ] |
| 283 | + }, |
| 284 | + { |
| 285 | + "cell_type": "code", |
| 286 | + "execution_count": 9, |
| 287 | + "metadata": { |
| 288 | + "colab": { |
| 289 | + "base_uri": "https://localhost:8080/" |
| 290 | + }, |
| 291 | + "id": "xRQ_nUf_8sZA", |
| 292 | + "outputId": "19b8d99c-b330-406d-e728-407c18d82f20" |
| 293 | + }, |
| 294 | + "outputs": [ |
| 295 | + { |
| 296 | + "data": { |
| 297 | + "text/plain": [ |
| 298 | + "0.3003938539283667" |
| 299 | + ] |
| 300 | + }, |
| 301 | + "execution_count": 9, |
| 302 | + "metadata": {}, |
| 303 | + "output_type": "execute_result" |
| 304 | + } |
| 305 | + ], |
| 306 | + "source": [ |
| 307 | + "# Sum of first three components' explained variance ratios\n", |
| 308 | + "tsvd.explained_variance_ratio_[0:3].sum()" |
| 309 | + ] |
| 310 | + }, |
| 311 | + { |
| 312 | + "cell_type": "code", |
| 313 | + "execution_count": null, |
| 314 | + "metadata": { |
| 315 | + "id": "zbExVkXp8vpi" |
| 316 | + }, |
| 317 | + "outputs": [], |
| 318 | + "source": [] |
| 319 | + } |
| 320 | + ], |
| 321 | + "metadata": { |
| 322 | + "colab": { |
| 323 | + "name": "DimentionalityReductionUsingFeatureExtraction_PythonCodeTutorial.ipynb", |
| 324 | + "provenance": [] |
| 325 | + }, |
| 326 | + "interpreter": { |
| 327 | + "hash": "f89a88aed07bbcd763ac68893150ace71e487877d8c6527a76855322f20001c6" |
| 328 | + }, |
| 329 | + "kernelspec": { |
| 330 | + "display_name": "Python 3.9.12 64-bit", |
| 331 | + "language": "python", |
| 332 | + "name": "python3" |
| 333 | + }, |
| 334 | + "language_info": { |
| 335 | + "name": "python", |
| 336 | + "version": "3.9.12" |
| 337 | + } |
| 338 | + }, |
| 339 | + "nbformat": 4, |
| 340 | + "nbformat_minor": 0 |
| 341 | +} |
0 commit comments