-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathgatherby.jl
467 lines (402 loc) · 17.5 KB
/
gatherby.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
using .Base: sub_with_overflow, add_with_overflow, mul_with_overflow
"""
gatherby(ds, cols;
mapformats::Bool = true,
stable::Bool = true,
isgathered::Bool = false,
eachrow::Bool = false,
threads = true)
Return a `Gatherby` representing a view of a `gathered` data set which each group of observation are next to each other.
# Arguments
- `ds` : an `AbstractDataset`.
- `cols` : data set columns to gather by. Can be any column selector
($COLUMNINDEX_STR; $MULTICOLUMNINDEX_STR).
- `mapforamts`: Whether the formated values should be used or not.
- `stable`: Whether the stable alogrithm should be used or not. Setting this to `false` may improve the performance for data set with many groups.
- `isgathered`: If `true` the function assumes that the observation are grouped based on some predefined rules and it only find the start and the end of each group.
- `eachrow`: If `true` the function assumes that each row of the input data set is a group. This is very useful for reshaping data. See `transpose`.
- `threads`: By default multi threaded algorithm will be used to gather observations, however, uses can change this by passing `false` to this keyword.
# See also
[`groupby!`](@ref), [`groupby`](@ref), [`combine`](@ref), [`modify`](@ref), [`modify!`](@ref), [`eachgroup`](@ref)
# Examples
```jldoctest
julia> ds = Dataset(a=repeat([1, 2, 3, 4], outer=[2]),
b=repeat([2, 1], outer=[4]),
c=1:8);
julia> gatherby(ds, :a)
8×3 View of GatherBy Dataset, Gathered by: a
a b c
identity identity identity
Int64? Int64? Int64?
──────────────────────────────
1 2 1
1 2 5
2 1 2
2 1 6
3 2 3
3 2 7
4 1 4
4 1 8
julia> gatherby(ds, [:b, :c])
8×3 View of GatherBy Dataset, Gathered by: b ,c
a b c
identity identity identity
Int64? Int64? Int64?
──────────────────────────────
1 2 1
2 1 2
3 2 3
4 1 4
1 2 5
2 1 6
3 2 7
4 1 8
julia> collect(eachgroup(gatherby(ds, [:b])))
2-element Vector{SubDataset}:
4×3 SubDataset
Row │ a b c
│ identity identity identity
│ Int64? Int64? Int64?
─────┼──────────────────────────────
1 │ 1 2 1
2 │ 3 2 3
3 │ 1 2 5
4 │ 3 2 7
4×3 SubDataset
Row │ a b c
│ identity identity identity
│ Int64? Int64? Int64?
─────┼──────────────────────────────
1 │ 2 1 2
2 │ 4 1 4
3 │ 2 1 6
4 │ 4 1 8
```
"""
gatherby
function _findstarts_for_indices(x)
_tmp = zeros(Bool, length(x))
_tmp[1] = true
Threads.@threads for i in 2:length(x)
!isequal(x[i-1], x[i]) ? _tmp[i]=true : nothing
end
findall(_tmp)
end
function compute_indices(groups, ngroups, ::Val{T}; threads = true) where T
idx = Vector{T}(undef, length(groups))
_fill_idx_for_sort!(idx)
if length(groups) == ngroups
return idx, copy(idx)
end
# TODO we have the same ifelse in sort, probably we need to clean up these into a new function
if threads && Threads.nthreads() > 1 && length(groups) > Threads.nthreads() && ngroups > 100_000 && ngroups*Threads.nthreads() < length(groups)
starts = _ds_sort_int_missatright_nopermx_threaded!(groups, idx, ngroups, 1, Val(T))
elseif threads && Threads.nthreads() > 1 && length(groups) > Threads.nthreads() && ngroups > 100_000
starts = _ds_sort_int_missatright_nopermx_threaded_lm!(groups, idx, ngroups, 1, Val(T))
else
starts = _ds_sort_int_missatright_nopermx!(groups, idx, ngroups, 1, Val(T))
end
pop!(starts)
pop!(starts)
pop!(starts)
idx, starts
end
# fast combine for gatherby data
mutable struct GatherBy
parent
groupcols
groups
lastvalid
mapformats::Bool
perm
starts
end
Base.copy(gds::GatherBy) = GatherBy(copy(gds.parent), copy(gds.groupcols), copy(gds.groups), gds.lastvalid, gds.mapformats, gds.perm === nothing ? nothing : copy(gds.perm), gds.starts === nothing ? nothing : copy(gds.starts))
nrow(ds::GatherBy) = nrow(ds.parent)
ncol(ds::GatherBy) = ncol(ds.parent)
Base.names(ds::GatherBy, kwargs...) = names(ds.parent, kwargs...)
_names(ds::GatherBy) = _names(ds.parent)
_columns(ds::GatherBy) = _columns(ds.parent)
index(ds::GatherBy) = index(ds.parent)
Base.parent(ds::GatherBy) = ds.parent
Base.size(ds::GatherBy) = size(ds.parent)
Base.size(ds::GatherBy, i::Integer) = size(ds.parent, i)
getformat(ds::GatherBy, i) = getformat(ds.parent, i)
Base.summary(gds::GatherBy) =
@sprintf("%d×%d View of GatherBy Dataset, Gathered by: %s", size(gds.parent)..., join(_names(gds.parent)[gds.groupcols], " ,"))
function Base.show(io::IO, gds::GatherBy;
kwargs...)
if length(_get_perms(gds)) > 200
_show(io, view(gds.parent, [first(gds.perm, 100);last(gds.perm, 100)], :); title = summary(gds), show_omitted_cell_summary=false, show_row_number = false, kwargs...)
else
_show(io, view(gds.parent, gds.perm, :); title = summary(gds), show_omitted_cell_summary=false, show_row_number = false, kwargs...)
end
end
Base.show(io::IO, mime::MIME"text/plain", gds::GatherBy;
kwargs...) =
show(io, gds; title = summary(gds), kwargs...)
function _group_creator!(groups, starts, ngroups)
if ngroups == 1
fill!(groups, 1)
return
end
for j in 1:ngroups
lo = starts[j]
j == ngroups ? hi = length(groups) : hi = starts[j + 1] - 1
fill!(view(groups, lo:hi), j)
end
end
# eachrow = true tells gatherby that each row of passed dataset is a new group - this is useful for transpose()
function gatherby(ds::AbstractDataset, cols::MultiColumnIndex; mapformats::Bool = true, stable::Bool = true, isgathered::Bool = false, eachrow::Bool = false, threads = true)
colsidx = index(ds)[cols]
if isempty(ds)
return GatherBy(ds, colsidx, Int[], 0, mapformats, nothing, nothing)
end
T = nrow(ds) < typemax(Int32) ? Int32 : Int64
_check_consistency(ds)
if isgathered
if eachrow
return GatherBy(ds, colsidx, 1:nrow(ds), nrow(ds), mapformats, 1:nrow(ds), 1:nrow(ds))
else
colindex, ranges, last_valid_index = _find_starts_of_groups(ds, colsidx, Val(T); mapformats = mapformats, threads = threads)
groups = Vector{T}(undef, nrow(ds))
_group_creator!(groups, ranges, last_valid_index)
return GatherBy(ds, colindex, groups, last_valid_index, mapformats, 1:nrow(ds), ranges)
end
else
if eachrow
a = _gather_groups(ds, colsidx, Val(T), mapformats = mapformats, stable = stable, threads = threads)
b = compute_indices(a[1], a[3], nrow(ds) < typemax(Int32) ? Val(Int32) : Val(Int64); threads = threads)
return GatherBy(ds, colsidx, 1:nrow(ds), nrow(ds), mapformats, b[1], 1:nrow(ds))
else
a = _gather_groups(ds, colsidx, Val(T), mapformats = mapformats, stable = stable, threads = threads)
return GatherBy(ds, colsidx, a[1], a[3], mapformats, nothing, nothing)
end
end
end
gatherby(ds::AbstractDataset, col::ColumnIndex; mapformats = true, stable = true, isgathered = false, eachrow = false, threads = true) = gatherby(ds, [col], mapformats = mapformats, stable = stable, isgathered = isgathered, eachrow = eachrow, threads = threads)
__SPFRMT(x) = x & 1023
__SPFRMT(::Missing) = missing # not needed
# currently not been used in gatherby
# use sort and format trick for fast gatherby - hm stands for high memory footprint
function hm_gatherby(ds::AbstractDataset, cols::MultiColumnIndex; mapformats = false, threads = true)
modify!(ds, cols=>byrow(hash; threads = threads, mapformats = mapformats)=>:___tmp___cols8934, :___tmp___cols8934=>identity=>:___tmp___cols8934_2)
setformat!(ds, :___tmp___cols8934_2=>__SPFRMT)
gds = groupby(ds, [:___tmp___cols8934_2, :___tmp___cols8934], stable = false, threads = threads)
grpcols, ranges, last_valid_index = _find_starts_of_groups(view(ds, gds.perm, cols), cols, nrow(ds) < typemax(Int32) ? Val(Int32) : Val(Int64); mapformats = mapformats, threads = threads)
select!(ds, Not([:___tmp___cols8934, :___tmp___cols8934_2]))
GatherBy(ds, grpcols, nothing, last_valid_index, mapformats, gds.perm, ranges)
end
function _fill_mapreduce_col!(x, f, op, y, loc)
@inbounds for i in 1:length(y)
x[loc[i]] = op(x[loc[i]], f(y[i]))
end
end
function _fill_mapreduce_col!(x, f::Vector, op, y, loc)
@inbounds for i in 1:length(y)
x[loc[i]] = op(x[loc[i]], f[loc[i]](y[i]))
end
end
function _fill_mapreduce_col_threaded!(x, f, op, y, loc, nt)
@sync for thid in 0:nt-1
Threads.@spawn for i in 1:length(y)
@inbounds if loc[i] % nt == thid
# we need to do more complicated stuff here?
x[loc[i]] = op(x[loc[i]], f(y[i]))
end
end
end
end
function _fill_mapreduce_col_threaded!(x, f::Vector, op, y, loc, nt)
@sync for thid in 0:nt-1
Threads.@spawn for i in 1:length(y)
@inbounds if loc[i] % nt == thid
x[loc[i]] = op(x[loc[i]], f[loc[i]](y[i]))
end
end
end
end
function gatherby_mapreduce(gds::GatherBy, f, op, col::ColumnIndex, nt, init, ::Val{T}; promotetypes = false, threads = true) where T
CT = T
if promotetypes
T <: Base.SmallSigned ? CT = Int : nothing
T <: Base.SmallUnsigned ? CT = UInt : nothing
end
res = allocatecol(Union{CT, Missing}, gds.lastvalid)
fill!(res, init)
if threads && Threads.nthreads() > 1 && gds.lastvalid > 100_000
_fill_mapreduce_col_threaded!(res, f, op, _columns(gds.parent)[index(gds.parent)[col]], gds.groups, nt)
else
_fill_mapreduce_col!(res, f, op, _columns(gds.parent)[index(gds.parent)[col]], gds.groups)
end
res
end
_gatherby_maximum(gds, col; f = identity, nt = Threads.nthreads(), threads = true) = gatherby_mapreduce(gds, f, _stat_max_fun, col, nt, missing, Val(nonmissingtype(eltype(gds.parent[!, col]))), threads = threads)
_gatherby_minimum(gds, col; f = identity, nt = Threads.nthreads(), threads = true) = gatherby_mapreduce(gds, f, _stat_min_fun, col, nt, missing, Val(nonmissingtype(eltype(gds.parent[!, col]))), threads = threads)
_gatherby_sum(gds, col; f = identity, nt = Threads.nthreads(), threads = true) = gatherby_mapreduce(gds, f, _stat_add_sum, col, nt, missing, Val(typeof(zero(Core.Compiler.return_type(f, Tuple{eltype(gds.parent[!, col])})))), promotetypes = true, threads = threads)
_gatherby_n(gds, col; nt = Threads.nthreads(), threads = true) = _gatherby_sum(gds, col, f = _stat_notmissing, nt = nt, threads = threads)
_gatherby_length(gds, col; nt = Threads.nthreads(), threads = true) = _gatherby_sum(gds, col, f = x->1, nt = nt, threads = threads)
_gatherby_cntnan(gds, col; nt = Threads.nthreads(), threads = true) = _gatherby_sum(gds, col, f = ISNAN, nt = nt, threads = threads)
_gatherby_nmissing(gds, col; nt = Threads.nthreads(), threads = true) = _gatherby_sum(gds, col, f = _stat_ismissing, nt = nt, threads = threads)
function _fill_gatherby_mean_barrier!(res, sval, nval)
@inbounds for i in 1:length(nval)
if nval[i] == 0
res[i] = missing
else
res[i] = sval[i]/nval[i]
end
end
end
function _gatherby_mean(gds, col; nt = Threads.nthreads(), threads = true)
if threads
nt2 = max(div(nt, 2),1)
t1 = Threads.@spawn _gatherby_sum(gds, col, nt = nt2)
t2 = Threads.@spawn _gatherby_n(gds, col, nt = nt2)
sval = fetch(t1)
nval = fetch(t2)
else
t1 = _gatherby_sum(gds, col, threads = threads)
t2 = _gatherby_n(gds, col, threads = threads)
sval = t1
nval = t2
end
T = Core.Compiler.return_type(/, Tuple{nonmissingtype(eltype(sval)), nonmissingtype(eltype(nval))})
res = _our_vect_alloc(Union{Missing, T}, length(nval))
_fill_gatherby_mean_barrier!(res, sval, nval)
res
end
function _fill_gatherby_var_barrier!(res, countnan, meanval, ss, nval, cal_std, dof)
@inbounds for i in 1:length(nval)
if cal_std
if countnan[i] > 0
res[i] = NaN
elseif nval[i] == 0
res[i] = missing
elseif nval[i] == 1 && dof
res[i] = missing
else
res[i] = sqrt(ss[i]/(nval[i]-Int(dof)))
end
else
if countnan[i] > 0
res[i] = NaN
elseif nval[i] == 0
res[i] = missing
elseif nval[i] == 1 && dof
res[i] = missing
else
res[i] = ss[i]/(nval[i]-Int(dof))
end
end
end
end
# TODO directly calculating var should be a better approach
function _gatherby_var(gds, col; dof = true, cal_std = false, threads = true)
if threads
nt = Threads.nthreads()
nt2 = max(div(nt,2),1)
t1 = Threads.@spawn _gatherby_cntnan(gds, col, nt = nt2)
t2 = Threads.@spawn _gatherby_mean(gds, col, nt = nt2)
meanval = fetch(t2)
t3 = Threads.@spawn gatherby_mapreduce(gds, [x->abs2(x - meanval[i]) for i in 1:length(meanval)], _stat_add_sum, col, nt2, missing, Val(Float64))
t4 = Threads.@spawn _gatherby_n(gds, col, nt = nt2)
countnan = fetch(t1)
ss = fetch(t3)
nval = fetch(t4)
else
t1 = _gatherby_cntnan(gds, col, threads = threads)
t2 = _gatherby_mean(gds, col, threads = threads)
meanval = t2
t3 = gatherby_mapreduce(gds, [x->abs2(x - meanval[i]) for i in 1:length(meanval)], _stat_add_sum, col, Threads.nthreads(), missing, Val(Float64), threads = threads)
t4 = _gatherby_n(gds, col, threads = threads)
countnan = t1
ss = t3
nval = t4
end
T = Core.Compiler.return_type(/, Tuple{nonmissingtype(eltype(meanval)), nonmissingtype(eltype(nval))})
res = _our_vect_alloc(Union{Missing, T}, length(nval))
_fill_gatherby_var_barrier!(res, countnan, meanval, ss, nval, cal_std, dof)
res
end
_gatherby_std(gds, col; dof = true, threads = true) = _gatherby_var(gds, col; dof = dof, cal_std = true, threads = threads)
const FAST_GATHERBY_REDUCTION = [sum, length, minimum, maximum, mean, var, std, n, nmissing]
function _fast_gatherby_reduction(gds, ms)
!(gds isa GatherBy) && return false
gds.groups == nothing && return false
for i in 1:length(ms)
if (ms[i].second.first isa Expr) && ms[i].second.first.head == :BYROW
elseif (ms[i].second.first isa Base.Callable)
flag = ms[i].second.first ∈ FAST_GATHERBY_REDUCTION
!flag && return false
end
end
return true
end
function _fast_gatherby_groups_to_res!(outres, x, grp)
# the first element of each group is used for the output data set
@inbounds for i in length(x):-1:1
outres[grp[i]] = x[i]
end
end
function _fast_gatherby_combine_f_barrier(gds, col, newds, mssecond, mslast, newds_lookup, grp, ngrps, threads)
if !(mssecond isa Expr)
if mssecond == sum
newds[!, mslast] = _gatherby_sum(gds, col, threads = threads)
elseif mssecond == maximum
newds[!, mslast] = _gatherby_maximum(gds, col, threads = threads)
elseif mssecond == minimum
newds[!, mslast] = _gatherby_minimum(gds, col, threads = threads)
elseif mssecond == mean
newds[!, mslast] = _gatherby_mean(gds, col, threads = threads)
elseif mssecond == mean
newds[!, mslast] = _gatherby_mean(gds, col, threads = threads)
elseif mssecond == var
newds[!, mslast] = _gatherby_var(gds, col, dof = true, threads = threads)
elseif mssecond == std
newds[!, mslast] = _gatherby_std(gds, col, dof = true, threads = threads)
elseif mssecond == length
newds[!, mslast] = _gatherby_length(gds, col, threads = threads)
elseif mssecond == IMD.n
newds[!, mslast] = _gatherby_n(gds, col, threads = threads)
else mssecond == IMD.nmissing
newds[!, mslast] = _gatherby_nmissing(gds, col, threads = threads)
end
elseif (mssecond isa Expr) && mssecond.head == :BYROW
newds[!, mslast] = byrow(newds, mssecond.args[1], col; mssecond.args[2]...)
else
throw(ArgumentError("`combine` doesn't support $(msfirst=>mssecond=>mslast) combination"))
end
end
function _combine_fast_gatherby_reduction(gds, ms, newlookup, new_nm; dropgroupcols = false, threads = true)
groupcols = gds.groupcols
ngroups = gds.lastvalid
groups = gds.groups
all_names = _names(gds.parent)
newds_idx = Index(Dict{Symbol, Int}(), Symbol[], Dict{Int, Function}(), Int[], Bool[], false, [], Int[], 1, false)
newds = Dataset([], newds_idx)
newds_lookup = index(newds).lookup
var_cnt = 1
if !dropgroupcols
for j in 1:length(groupcols)
addmissing = false
_tmpres = allocatecol(gds.parent[!, groupcols[j]].val, ngroups, addmissing = addmissing)
if DataAPI.refpool(_tmpres) !== nothing
_fast_gatherby_groups_to_res!(_tmpres.refs, DataAPI.refarray(_columns(gds.parent)[groupcols[j]]), groups)
push!(_columns(newds), _tmpres)
else
_fast_gatherby_groups_to_res!(_tmpres, _columns(gds.parent)[groupcols[j]], groups)
push!(_columns(newds), _tmpres)
end
push!(index(newds), new_nm[var_cnt])
setformat!(newds, new_nm[var_cnt] => getformat(parent(gds), groupcols[j]))
var_cnt += 1
end
end
for i in 1:length(ms)
_fast_gatherby_combine_f_barrier(gds, ms[i].first, newds, ms[i].second.first, ms[i].second.second, newds_lookup, groups, ngroups, threads)
# if !haskey(index(newds), ms[i].second.second)
# push!(index(newds), ms[i].second.second)
# end
end
newds
end