-
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.js
171 lines (154 loc) · 6.37 KB
/
main.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var isScalarMostlySafeCompatible = require( './../../base/assert/is-scalar-mostly-safe-compatible' ); // eslint-disable-line id-length
var isMostlySafeCast = require( './../../base/assert/is-mostly-safe-data-type-cast' );
var isndarrayLike = require( '@stdlib/assert/is-ndarray-like' );
var unaryReduceSubarray = require( './../../base/unary-reduce-subarray' );
var base = require( './../../base/includes' );
var spreadDimensions = require( './../../base/spread-dimensions' );
var indicesComplement = require( '@stdlib/array/base/indices-complement' );
var getShape = require( './../../shape' ); // note: non-base accessor is intentional due to the input array originating in userland
var getOrder = require( './../../base/order' );
var getData = require( './../../base/data-buffer' );
var getStrides = require( './../../base/strides' );
var getOffset = require( './../../base/offset' );
var getDType = require( './../../base/dtype' );
var empty = require( './../../empty' );
var ndarrayCtor = require( './../../base/ctor' );
var maybeBroadcastArray = require( './../../base/maybe-broadcast-array' );
var broadcastScalar = require( './../../base/broadcast-scalar' );
var reinterpretBoolean = require( '@stdlib/strided/base/reinterpret-boolean' );
var takeIndexed = require( '@stdlib/array/base/take-indexed' );
var zeroTo = require( '@stdlib/array/base/zero-to' );
var objectAssign = require( '@stdlib/object/assign' );
var format = require( '@stdlib/string/format' );
var defaults = require( './defaults.json' );
var validate = require( './validate.js' );
// MAIN //
/**
* Tests whether an ndarray contains a specified value along one or more dimensions.
*
* @param {ndarray} x - input ndarray
* @param {(ndarray|*)} searchElement - search element
* @param {Options} [options] - function options
* @param {IntegerArray} [options.dims] - list of dimensions over which to perform a reduction
* @param {boolean} [options.keepdims=false] - boolean indicating whether the reduced dimensions should be included in the returned ndarray as singleton dimensions
* @throws {TypeError} first argument must be an ndarray-like object
* @throws {Error} second argument must be broadcast-compatible with the non-reduced dimensions of the input ndarray
* @throws {TypeError} second argument must have a data type which can be safely cast to the data type of the input ndarray
* @throws {TypeError} options argument must be an object
* @throws {RangeError} dimension indices must not exceed input ndarray bounds
* @throws {RangeError} number of dimension indices must not exceed the number of input ndarray dimensions
* @throws {Error} must provide valid options
* @returns {ndarray} output ndarray
*
* @example
* var Float64Array = require( '@stdlib/array/float64' );
* var ndarray = require( '@stdlib/ndarray/ctor' );
*
* // Create a data buffer:
* var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
*
* // Define the shape of the input array:
* var sh = [ 3, 1, 2 ];
*
* // Define the array strides:
* var sx = [ 4, 4, 1 ];
*
* // Define the index offset:
* var ox = 1;
*
* // Create an input ndarray:
* var x = new ndarray( 'float64', xbuf, sh, sx, ox, 'row-major' );
*
* // Perform reduction:
* var out = includes( x, 6.0 );
* // returns <ndarray>
*
* var v = out.get();
* // returns true
*/
function includes( x, searchElement, options ) {
var opts;
var view;
var err;
var idx;
var shx;
var shy;
var ord;
var dt;
var N;
var v;
var y;
if ( !isndarrayLike( x ) ) {
throw new TypeError( format( 'invalid argument. First argument must be an ndarray-like object. Value: `%s`.', x ) );
}
shx = getShape( x );
N = shx.length;
opts = objectAssign( {}, defaults );
if ( arguments.length > 2 ) {
err = validate( opts, N, options );
if ( err ) {
throw err;
}
}
// When a list of dimensions is not provided, reduce the entire input array across all dimensions...
if ( opts.dims === null ) {
opts.dims = zeroTo( N );
}
// Resolve the list of non-reduced dimensions:
idx = indicesComplement( N, opts.dims );
// Resolve the output array shape:
shy = takeIndexed( shx, idx );
// Resolve input array meta data:
dt = getDType( x );
ord = getOrder( x );
// Determine how to broadcast the search element...
if ( isndarrayLike( searchElement ) ) {
if ( !isMostlySafeCast( getDType( searchElement ), dt ) ) {
throw new TypeError( format( 'invalid argument. Second argument cannot be safely cast to the input array data type. Value: `%s`.', searchElement ) );
}
try {
v = maybeBroadcastArray( searchElement, shy );
} catch ( err ) { // eslint-disable-line no-unused-vars
throw new Error( 'invalid argument. Second argument must be broadcast-compatible with the non-reduced dimensions of the input array.' );
}
} else if ( isScalarMostlySafeCompatible( searchElement, dt ) ) {
v = broadcastScalar( searchElement, dt, shy, ord );
} else {
throw new TypeError( format( 'invalid argument. Second argument cannot be safely cast to the input array data type. Value: `%s`.', searchElement ) );
}
// Initialize an output array whose shape matches that of the non-reduced dimensions and which has the same memory layout as the input array:
y = empty( shy, {
'dtype': 'bool',
'order': ord
});
// Reinterpret the output array as an "indexed" array to ensure faster element access:
view = new ndarrayCtor( 'uint8', reinterpretBoolean( getData( y ), 0 ), shy, getStrides( y, false ), getOffset( y ), getOrder( y ) );
// Perform the reduction:
unaryReduceSubarray( base, [ x, view, v ], opts.dims );
// Check whether we need to reinsert singleton dimensions which can be useful for broadcasting the returned output array to the shape of the original input array...
if ( opts.keepdims ) {
y = spreadDimensions( N, y, idx );
}
return y;
}
// EXPORTS //
module.exports = includes;