/** * @license Apache-2.0 * * Copyright (c) 2025 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isScalarMostlySafeCompatible = require( './../../base/assert/is-scalar-mostly-safe-compatible' ); // eslint-disable-line id-length var isMostlySafeCast = require( './../../base/assert/is-mostly-safe-data-type-cast' ); var isndarrayLike = require( '@stdlib/assert/is-ndarray-like' ); var unaryReduceSubarray = require( './../../base/unary-reduce-subarray' ); var base = require( './../../base/includes' ); var spreadDimensions = require( './../../base/spread-dimensions' ); var indicesComplement = require( '@stdlib/array/base/indices-complement' ); var getShape = require( './../../shape' ); // note: non-base accessor is intentional due to the input array originating in userland var getOrder = require( './../../base/order' ); var getData = require( './../../base/data-buffer' ); var getStrides = require( './../../base/strides' ); var getOffset = require( './../../base/offset' ); var getDType = require( './../../base/dtype' ); var empty = require( './../../empty' ); var ndarrayCtor = require( './../../base/ctor' ); var maybeBroadcastArray = require( './../../base/maybe-broadcast-array' ); var broadcastScalar = require( './../../base/broadcast-scalar' ); var reinterpretBoolean = require( '@stdlib/strided/base/reinterpret-boolean' ); var takeIndexed = require( '@stdlib/array/base/take-indexed' ); var zeroTo = require( '@stdlib/array/base/zero-to' ); var objectAssign = require( '@stdlib/object/assign' ); var format = require( '@stdlib/string/format' ); var defaults = require( './defaults.json' ); var validate = require( './validate.js' ); // MAIN // /** * Tests whether an ndarray contains a specified value along one or more dimensions. * * @param {ndarray} x - input ndarray * @param {(ndarray|*)} searchElement - search element * @param {Options} [options] - function options * @param {IntegerArray} [options.dims] - list of dimensions over which to perform a reduction * @param {boolean} [options.keepdims=false] - boolean indicating whether the reduced dimensions should be included in the returned ndarray as singleton dimensions * @throws {TypeError} first argument must be an ndarray-like object * @throws {Error} second argument must be broadcast-compatible with the non-reduced dimensions of the input ndarray * @throws {TypeError} second argument must have a data type which can be safely cast to the data type of the input ndarray * @throws {TypeError} options argument must be an object * @throws {RangeError} dimension indices must not exceed input ndarray bounds * @throws {RangeError} number of dimension indices must not exceed the number of input ndarray dimensions * @throws {Error} must provide valid options * @returns {ndarray} output ndarray * * @example * var Float64Array = require( '@stdlib/array/float64' ); * var ndarray = require( '@stdlib/ndarray/ctor' ); * * // Create a data buffer: * var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] ); * * // Define the shape of the input array: * var sh = [ 3, 1, 2 ]; * * // Define the array strides: * var sx = [ 4, 4, 1 ]; * * // Define the index offset: * var ox = 1; * * // Create an input ndarray: * var x = new ndarray( 'float64', xbuf, sh, sx, ox, 'row-major' ); * * // Perform reduction: * var out = includes( x, 6.0 ); * // returns * * var v = out.get(); * // returns true */ function includes( x, searchElement, options ) { var opts; var view; var err; var idx; var shx; var shy; var ord; var dt; var N; var v; var y; if ( !isndarrayLike( x ) ) { throw new TypeError( format( 'invalid argument. First argument must be an ndarray-like object. Value: `%s`.', x ) ); } shx = getShape( x ); N = shx.length; opts = objectAssign( {}, defaults ); if ( arguments.length > 2 ) { err = validate( opts, N, options ); if ( err ) { throw err; } } // When a list of dimensions is not provided, reduce the entire input array across all dimensions... if ( opts.dims === null ) { opts.dims = zeroTo( N ); } // Resolve the list of non-reduced dimensions: idx = indicesComplement( N, opts.dims ); // Resolve the output array shape: shy = takeIndexed( shx, idx ); // Resolve input array meta data: dt = getDType( x ); ord = getOrder( x ); // Determine how to broadcast the search element... if ( isndarrayLike( searchElement ) ) { if ( !isMostlySafeCast( getDType( searchElement ), dt ) ) { throw new TypeError( format( 'invalid argument. Second argument cannot be safely cast to the input array data type. Value: `%s`.', searchElement ) ); } try { v = maybeBroadcastArray( searchElement, shy ); } catch ( err ) { // eslint-disable-line no-unused-vars throw new Error( 'invalid argument. Second argument must be broadcast-compatible with the non-reduced dimensions of the input array.' ); } } else if ( isScalarMostlySafeCompatible( searchElement, dt ) ) { v = broadcastScalar( searchElement, dt, shy, ord ); } else { throw new TypeError( format( 'invalid argument. Second argument cannot be safely cast to the input array data type. Value: `%s`.', searchElement ) ); } // Initialize an output array whose shape matches that of the non-reduced dimensions and which has the same memory layout as the input array: y = empty( shy, { 'dtype': 'bool', 'order': ord }); // Reinterpret the output array as an "indexed" array to ensure faster element access: view = new ndarrayCtor( 'uint8', reinterpretBoolean( getData( y ), 0 ), shy, getStrides( y, false ), getOffset( y ), getOrder( y ) ); // Perform the reduction: unaryReduceSubarray( base, [ x, view, v ], opts.dims ); // Check whether we need to reinsert singleton dimensions which can be useful for broadcasting the returned output array to the shape of the original input array... if ( opts.keepdims ) { y = spreadDimensions( N, y, idx ); } return y; } // EXPORTS // module.exports = includes;