Skip to content

Latest commit

 

History

History

unary-reduce-subarray

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

unaryReduceSubarray

Perform a reduction over a list of specified dimensions in an input ndarray and assign results to a provided output ndarray.

Usage

var unaryReduceSubarray = require( '@stdlib/ndarray/base/unary-reduce-subarray' );

unaryReduceSubarray( fcn, arrays, dims[, options] )

Performs a reduction over a list of specified dimensions in an input ndarray and assigns results to a provided output ndarray.

var Float64Array = require( '@stdlib/array/float64' );
var filled = require( '@stdlib/array/base/filled' );
var ndarray2array = require( '@stdlib/ndarray/base/to-array' );
var every = require( '@stdlib/ndarray/base/every' );

// Create data buffers:
var xbuf = new Float64Array( [ 1.0, 2.0, 3.0, 4.0, 5.0, 0.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0 ] );
var ybuf = filled( false, 3 );

// Define the array shapes:
var xsh = [ 1, 3, 2, 2 ];
var ysh = [ 1, 3 ];

// Define the array strides:
var sx = [ 12, 4, 2, 1 ];
var sy = [ 3, 1 ];

// Define the index offsets:
var ox = 0;
var oy = 0;

// Create an input ndarray-like object:
var x = {
    'dtype': 'float64',
    'data': xbuf,
    'shape': xsh,
    'strides': sx,
    'offset': ox,
    'order': 'row-major'
};

// Create an output ndarray-like object:
var y = {
    'dtype': 'generic',
    'data': ybuf,
    'shape': ysh,
    'strides': sy,
    'offset': oy,
    'order': 'row-major'
};

// Perform a reduction:
unaryReduceSubarray( every, [ x, y ], [ 2, 3 ] );

var arr = ndarray2array( y.data, y.shape, y.strides, y.offset, y.order );
// returns [ [ true, false, true ] ]

The function accepts the following arguments:

  • fcn: function which will be applied to a subarray and should reduce the subarray to a single scalar value.
  • arrays: array-like object containing one input ndarray and one output ndarray, followed by any additional ndarray arguments.
  • dims: list of dimensions over which to perform a reduction.
  • options: function options which are passed through to fcn (optional).

Each provided ndarray should be an object with the following properties:

  • dtype: data type.
  • data: data buffer.
  • shape: dimensions.
  • strides: stride lengths.
  • offset: index offset.
  • order: specifies whether an ndarray is row-major (C-style) or column major (Fortran-style).

TODO: document factory method

Notes

  • The output ndarray and any additional ndarray arguments are expected to have the same dimensions as the non-reduced dimensions of the input ndarray. When calling the reduction function, any additional ndarray arguments are provided as zero-dimensional ndarray-like objects.

  • The reduction function is expected to have the following signature:

    fcn( arrays[, options] )
    

    where

    • arrays: array containing a subarray of the input ndarray and any additional ndarray arguments as zero-dimensional ndarrays.
    • options: function options (optional).
  • For very high-dimensional ndarrays which are non-contiguous, one should consider copying the underlying data to contiguous memory before performing a reduction in order to achieve better performance.

Examples

var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var filled = require( '@stdlib/array/base/filled' );
var ndarray2array = require( '@stdlib/ndarray/base/to-array' );
var every = require( '@stdlib/ndarray/base/every' );
var unaryReduceSubarray = require( '@stdlib/ndarray/base/unary-reduce-subarray' );

var N = 10;
var x = {
    'dtype': 'generic',
    'data': discreteUniform( N, -5, 5, {
        'dtype': 'generic'
    }),
    'shape': [ 1, 5, 2 ],
    'strides': [ 10, 2, 1 ],
    'offset': 0,
    'order': 'row-major'
};
var y = {
    'dtype': 'generic',
    'data': filled( false, 2 ),
    'shape': [ 1, 2 ],
    'strides': [ 2, 1 ],
    'offset': 0,
    'order': 'row-major'
};

unaryReduceSubarray( every, [ x, y ], [ 1 ] );

console.log( ndarray2array( x.data, x.shape, x.strides, x.offset, x.order ) );
console.log( ndarray2array( y.data, y.shape, y.strides, y.offset, y.order ) );