diff --git a/lib/node_modules/@stdlib/stats/base/README.md b/lib/node_modules/@stdlib/stats/base/README.md index 6533f3c8a450..fd743246d5ce 100644 --- a/lib/node_modules/@stdlib/stats/base/README.md +++ b/lib/node_modules/@stdlib/stats/base/README.md @@ -71,9 +71,9 @@ The namespace contains the following statistical functions: - [`dnanmskmin( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskmin]: calculate the minimum value of a double-precision floating-point strided array according to a mask, ignoring `NaN` values. - [`dnanmskrange( N, x, strideX, mask, strideMask )`][@stdlib/stats/base/dnanmskrange]: calculate the range of a double-precision floating-point strided array according to a mask, ignoring `NaN` values. - [`dnanstdev( N, correction, x, stride )`][@stdlib/stats/base/dnanstdev]: calculate the standard deviation of a double-precision floating-point strided array ignoring `NaN` values. -- [`dsem( N, correction, x, stride )`][@stdlib/stats/base/dsem]: calculate the standard error of the mean of a double-precision floating-point strided array. +- [`dsem( N, correction, x, strideX )`][@stdlib/stats/base/dsem]: calculate the standard error of the mean of a double-precision floating-point strided array. - [`dsempn( N, correction, x, strideX )`][@stdlib/stats/base/dsempn]: calculate the standard error of the mean of a double-precision floating-point strided array using a two-pass algorithm. -- [`dstdev( N, correction, x, stride )`][@stdlib/stats/base/dstdev]: calculate the standard deviation of a double-precision floating-point strided array. +- [`dstdev( N, correction, x, strideX )`][@stdlib/stats/base/dstdev]: calculate the standard deviation of a double-precision floating-point strided array. - [`dvarm( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarm]: calculate the variance of a double-precision floating-point strided array provided a known mean. - [`dvarmpn( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarmpn]: calculate the variance of a double-precision floating-point strided array provided a known mean and using Neely's correction algorithm. - [`maxBy( N, x, stride, clbk[, thisArg] )`][@stdlib/stats/base/max-by]: calculate the maximum value of a strided array via a callback function. @@ -119,7 +119,7 @@ The namespace contains the following statistical functions: - [`nanvariance( N, correction, x, stride )`][@stdlib/stats/base/nanvariance]: calculate the variance of a strided array ignoring `NaN` values. - [`nanvariancech( N, correction, x, stride )`][@stdlib/stats/base/nanvariancech]: calculate the variance of a strided array ignoring `NaN` values and using a one-pass trial mean algorithm. - [`nanvariancepn( N, correction, x, stride )`][@stdlib/stats/base/nanvariancepn]: calculate the variance of a strided array ignoring `NaN` values and using a two-pass algorithm. -- [`nanvariancetk( N, correction, x, stride )`][@stdlib/stats/base/nanvariancetk]: calculate the variance of a strided array ignoring `NaN` values and using a one-pass textbook algorithm. +- [`nanvariancetk( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancetk]: calculate the variance of a strided array ignoring `NaN` values and using a one-pass textbook algorithm. - [`nanvariancewd( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancewd]: calculate the variance of a strided array ignoring `NaN` values and using Welford's algorithm. - [`nanvarianceyc( N, correction, x, strideX )`][@stdlib/stats/base/nanvarianceyc]: calculate the variance of a strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer. - [`ndarray`][@stdlib/stats/base/ndarray]: base ndarray statistical functions. @@ -127,7 +127,7 @@ The namespace contains the following statistical functions: - [`range( N, x, stride )`][@stdlib/stats/base/range]: calculate the range of a strided array. - [`sdsnanmean( N, x, stride )`][@stdlib/stats/base/sdsnanmean]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using extended accumulation. - [`sdsnanmeanors( N, x, stride )`][@stdlib/stats/base/sdsnanmeanors]: calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation with extended accumulation. -- [`smean( N, x, stride )`][@stdlib/stats/base/smean]: calculate the arithmetic mean of a single-precision floating-point strided array. +- [`smean( N, x, strideX )`][@stdlib/stats/base/smean]: calculate the arithmetic mean of a single-precision floating-point strided array. - [`smeankbn( N, x, stride )`][@stdlib/stats/base/smeankbn]: calculate the arithmetic mean of a single-precision floating-point strided array using an improved Kahan–Babuška algorithm. - [`smeankbn2( N, x, stride )`][@stdlib/stats/base/smeankbn2]: calculate the arithmetic mean of a single-precision floating-point strided array using a second-order iterative Kahan–Babuška algorithm. - [`smeanlipw( N, x, stride )`][@stdlib/stats/base/smeanlipw]: calculate the arithmetic mean of a single-precision floating-point strided array using a one-pass trial mean algorithm with pairwise summation.