@@ -95,19 +95,19 @@ def _compute_PI(
95
95
"""
96
96
l = T_B .shape [0 ] - m + 1
97
97
squared_distance_profile = np .empty (l )
98
+ QT = np .empty (l , dtype = np .float64 )
98
99
for i in indices [start :stop ]:
99
100
Q = T_A [i : i + m ]
100
- # QT = core._sliding_dot_product(Q, T_B)
101
- QT = np .empty (l , dtype = np .float64 )
101
+ # QT[:] = core._sliding_dot_product(Q, T_B)
102
102
for j in range (l ):
103
103
QT [j ] = np .dot (Q , T_B [j : j + m ])
104
104
# Update P[i] relative to all T[j : j + m]
105
105
squared_distance_profile [:] = core ._mass (Q , T_B , QT , μ_Q [i ], σ_Q [i ], M_T , Σ_T )
106
- squared_distance_profile [:] = np .square (squared_distance_profile )
107
- if excl_zone is not None :
108
- zone_start = max (0 , i - excl_zone )
109
- zone_stop = min (l , i + excl_zone )
110
- squared_distance_profile [zone_start : zone_stop + 1 ] = np .inf
106
+ # squared_distance_profile[:] = np.square(squared_distance_profile)
107
+ # if excl_zone is not None:
108
+ # zone_start = max(0, i - excl_zone)
109
+ # zone_stop = min(l, i + excl_zone)
110
+ # squared_distance_profile[zone_start : zone_stop + 1] = np.inf
111
111
# I[thread_idx, i] = np.argmin(squared_distance_profile)
112
112
# P_squared[thread_idx, i] = squared_distance_profile[I[thread_idx, i]]
113
113
# if P_squared[thread_idx, i] == np.inf: # pragma: no cover
0 commit comments