|
621 | 621 | },
|
622 | 622 | {
|
623 | 623 | "cell_type": "code",
|
624 |
| - "execution_count": 31, |
| 624 | + "execution_count": 32, |
| 625 | + "metadata": {}, |
| 626 | + "outputs": [], |
| 627 | + "source": [ |
| 628 | + "study_minutes[2:6] = [80, 60, 30, 90]" |
| 629 | + ] |
| 630 | + }, |
| 631 | + { |
| 632 | + "cell_type": "markdown", |
| 633 | + "metadata": {}, |
| 634 | + "source": [ |
| 635 | + "## Creation\n", |
| 636 | + "* Random state\n", |
| 637 | + "* Appending rows\n", |
| 638 | + "\n", |
| 639 | + "## Indexing\n", |
| 640 | + "* Shortcut (tuple)\n", |
| 641 | + "* Fancy Indexing" |
| 642 | + ] |
| 643 | + }, |
| 644 | + { |
| 645 | + "cell_type": "code", |
| 646 | + "execution_count": 33, |
| 647 | + "metadata": {}, |
| 648 | + "outputs": [], |
| 649 | + "source": [ |
| 650 | + "study_minutes = np.array([\n", |
| 651 | + " study_minutes,\n", |
| 652 | + " np.zeros(100, np.uint16)\n", |
| 653 | + "])" |
| 654 | + ] |
| 655 | + }, |
| 656 | + { |
| 657 | + "cell_type": "code", |
| 658 | + "execution_count": 34, |
| 659 | + "metadata": {}, |
| 660 | + "outputs": [ |
| 661 | + { |
| 662 | + "data": { |
| 663 | + "text/plain": [ |
| 664 | + "(2, 100)" |
| 665 | + ] |
| 666 | + }, |
| 667 | + "execution_count": 34, |
| 668 | + "metadata": {}, |
| 669 | + "output_type": "execute_result" |
| 670 | + } |
| 671 | + ], |
| 672 | + "source": [ |
| 673 | + "study_minutes.shape" |
| 674 | + ] |
| 675 | + }, |
| 676 | + { |
| 677 | + "cell_type": "code", |
| 678 | + "execution_count": 36, |
| 679 | + "metadata": {}, |
| 680 | + "outputs": [], |
| 681 | + "source": [ |
| 682 | + "# Set round 2 day 1 to 60\n", |
| 683 | + "study_minutes[1][0] = 60" |
| 684 | + ] |
| 685 | + }, |
| 686 | + { |
| 687 | + "cell_type": "code", |
| 688 | + "execution_count": 37, |
| 689 | + "metadata": {}, |
| 690 | + "outputs": [ |
| 691 | + { |
| 692 | + "data": { |
| 693 | + "text/plain": [ |
| 694 | + "60" |
| 695 | + ] |
| 696 | + }, |
| 697 | + "execution_count": 37, |
| 698 | + "metadata": {}, |
| 699 | + "output_type": "execute_result" |
| 700 | + } |
| 701 | + ], |
| 702 | + "source": [ |
| 703 | + "study_minutes[1, 0]" |
| 704 | + ] |
| 705 | + }, |
| 706 | + { |
| 707 | + "cell_type": "code", |
| 708 | + "execution_count": 38, |
| 709 | + "metadata": {}, |
| 710 | + "outputs": [ |
| 711 | + { |
| 712 | + "data": { |
| 713 | + "text/plain": [ |
| 714 | + "(1, 0)" |
| 715 | + ] |
| 716 | + }, |
| 717 | + "execution_count": 38, |
| 718 | + "metadata": {}, |
| 719 | + "output_type": "execute_result" |
| 720 | + } |
| 721 | + ], |
| 722 | + "source": [ |
| 723 | + "1, 0" |
| 724 | + ] |
| 725 | + }, |
| 726 | + { |
| 727 | + "cell_type": "code", |
| 728 | + "execution_count": 39, |
625 | 729 | "metadata": {},
|
626 | 730 | "outputs": [
|
627 | 731 | {
|
628 | 732 | "data": {
|
629 | 733 | "text/plain": [
|
630 |
| - "array([150, 60, 80, 60, 30, 90, 0, 0, 0, 0, 0, 0, 0,\n", |
631 |
| - " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
632 |
| - " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
633 |
| - " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
634 |
| - " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
635 |
| - " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
636 |
| - " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
637 |
| - " 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=uint16)" |
| 734 | + "array([132, 122, 128, 44, 136, 129, 101, 95, 50, 132, 151, 64, 104,\n", |
| 735 | + " 175, 117, 146, 139, 129, 133, 176, 98, 160, 179, 99, 82, 142,\n", |
| 736 | + " 31, 106, 117, 56, 98, 67, 121, 159, 81, 170, 31, 50, 49,\n", |
| 737 | + " 87, 179, 51, 116, 177, 118, 78, 171, 117, 88, 123, 102, 44,\n", |
| 738 | + " 79, 31, 108, 80, 59, 137, 84, 93, 155, 160, 67, 80, 166,\n", |
| 739 | + " 164, 70, 50, 102, 113, 47, 131, 161, 118, 82, 89, 81, 43,\n", |
| 740 | + " 81, 38, 119, 52, 82, 31, 159, 57, 113, 71, 121, 140, 91,\n", |
| 741 | + " 70, 37, 106, 64, 127, 110, 58, 93, 79], dtype=uint16)" |
638 | 742 | ]
|
639 | 743 | },
|
640 |
| - "execution_count": 31, |
| 744 | + "execution_count": 39, |
| 745 | + "metadata": {}, |
| 746 | + "output_type": "execute_result" |
| 747 | + } |
| 748 | + ], |
| 749 | + "source": [ |
| 750 | + "rand = np.random.RandomState(42)\n", |
| 751 | + "fake_log = rand.randint(30, 180, size=100, dtype=np.uint16)\n", |
| 752 | + "fake_log" |
| 753 | + ] |
| 754 | + }, |
| 755 | + { |
| 756 | + "cell_type": "code", |
| 757 | + "execution_count": 40, |
| 758 | + "metadata": {}, |
| 759 | + "outputs": [ |
| 760 | + { |
| 761 | + "data": { |
| 762 | + "text/plain": [ |
| 763 | + "[44, 50]" |
| 764 | + ] |
| 765 | + }, |
| 766 | + "execution_count": 40, |
| 767 | + "metadata": {}, |
| 768 | + "output_type": "execute_result" |
| 769 | + } |
| 770 | + ], |
| 771 | + "source": [ |
| 772 | + "[fake_log[3], fake_log[8]]" |
| 773 | + ] |
| 774 | + }, |
| 775 | + { |
| 776 | + "cell_type": "code", |
| 777 | + "execution_count": 41, |
| 778 | + "metadata": {}, |
| 779 | + "outputs": [ |
| 780 | + { |
| 781 | + "data": { |
| 782 | + "text/plain": [ |
| 783 | + "array([44, 50], dtype=uint16)" |
| 784 | + ] |
| 785 | + }, |
| 786 | + "execution_count": 41, |
| 787 | + "metadata": {}, |
| 788 | + "output_type": "execute_result" |
| 789 | + } |
| 790 | + ], |
| 791 | + "source": [ |
| 792 | + "fake_log[[3, 8]]" |
| 793 | + ] |
| 794 | + }, |
| 795 | + { |
| 796 | + "cell_type": "code", |
| 797 | + "execution_count": 42, |
| 798 | + "metadata": {}, |
| 799 | + "outputs": [ |
| 800 | + { |
| 801 | + "data": { |
| 802 | + "text/plain": [ |
| 803 | + "array([[ 44, 50],\n", |
| 804 | + " [132, 122]], dtype=uint16)" |
| 805 | + ] |
| 806 | + }, |
| 807 | + "execution_count": 42, |
| 808 | + "metadata": {}, |
| 809 | + "output_type": "execute_result" |
| 810 | + } |
| 811 | + ], |
| 812 | + "source": [ |
| 813 | + "index = np.array([\n", |
| 814 | + " [3, 8],\n", |
| 815 | + " [0, 1]\n", |
| 816 | + "])\n", |
| 817 | + "fake_log[index]" |
| 818 | + ] |
| 819 | + }, |
| 820 | + { |
| 821 | + "cell_type": "code", |
| 822 | + "execution_count": 44, |
| 823 | + "metadata": {}, |
| 824 | + "outputs": [], |
| 825 | + "source": [ |
| 826 | + "study_minutes = np.append(study_minutes, [fake_log], axis=0)" |
| 827 | + ] |
| 828 | + }, |
| 829 | + { |
| 830 | + "cell_type": "code", |
| 831 | + "execution_count": 46, |
| 832 | + "metadata": {}, |
| 833 | + "outputs": [], |
| 834 | + "source": [ |
| 835 | + "study_minutes[1, 1] = 360" |
| 836 | + ] |
| 837 | + }, |
| 838 | + { |
| 839 | + "cell_type": "code", |
| 840 | + "execution_count": 47, |
| 841 | + "metadata": {}, |
| 842 | + "outputs": [ |
| 843 | + { |
| 844 | + "data": { |
| 845 | + "text/plain": [ |
| 846 | + "array([[150, 60, 80, 60, 30, 90, 0, 0, 0, 0, 0, 0, 0,\n", |
| 847 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 848 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 849 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 850 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 851 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 852 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 853 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", |
| 854 | + " [ 60, 360, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 855 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 856 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 857 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 858 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 859 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 860 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", |
| 861 | + " 0, 0, 0, 0, 0, 0, 0, 0, 0],\n", |
| 862 | + " [132, 122, 128, 44, 136, 129, 101, 95, 50, 132, 151, 64, 104,\n", |
| 863 | + " 175, 117, 146, 139, 129, 133, 176, 98, 160, 179, 99, 82, 142,\n", |
| 864 | + " 31, 106, 117, 56, 98, 67, 121, 159, 81, 170, 31, 50, 49,\n", |
| 865 | + " 87, 179, 51, 116, 177, 118, 78, 171, 117, 88, 123, 102, 44,\n", |
| 866 | + " 79, 31, 108, 80, 59, 137, 84, 93, 155, 160, 67, 80, 166,\n", |
| 867 | + " 164, 70, 50, 102, 113, 47, 131, 161, 118, 82, 89, 81, 43,\n", |
| 868 | + " 81, 38, 119, 52, 82, 31, 159, 57, 113, 71, 121, 140, 91,\n", |
| 869 | + " 70, 37, 106, 64, 127, 110, 58, 93, 79]], dtype=uint16)" |
| 870 | + ] |
| 871 | + }, |
| 872 | + "execution_count": 47, |
641 | 873 | "metadata": {},
|
642 | 874 | "output_type": "execute_result"
|
643 | 875 | }
|
644 | 876 | ],
|
645 | 877 | "source": [
|
646 |
| - "study_minutes[2:6] = [80, 60, 30, 90]\n", |
647 | 878 | "study_minutes"
|
648 | 879 | ]
|
649 | 880 | },
|
| 881 | + { |
| 882 | + "cell_type": "code", |
| 883 | + "execution_count": null, |
| 884 | + "metadata": {}, |
| 885 | + "outputs": [], |
| 886 | + "source": [] |
| 887 | + }, |
| 888 | + { |
| 889 | + "cell_type": "code", |
| 890 | + "execution_count": null, |
| 891 | + "metadata": {}, |
| 892 | + "outputs": [], |
| 893 | + "source": [] |
| 894 | + }, |
650 | 895 | {
|
651 | 896 | "cell_type": "code",
|
652 | 897 | "execution_count": null,
|
|
0 commit comments