@@ -2265,8 +2265,8 @@ The :mod:`array` module supports efficient storage of basic data types like
2265
2265
2266
2266
.. _typebytes :
2267
2267
2268
- Bytes
2269
- -----
2268
+ Bytes Objects
2269
+ -------------
2270
2270
2271
2271
.. index :: object: bytes
2272
2272
@@ -2275,69 +2275,71 @@ binary protocols are based on the ASCII text encoding, bytes objects offer
2275
2275
several methods that are only valid when working with ASCII compatible
2276
2276
data and are closely related to string objects in a variety of other ways.
2277
2277
2278
- Firstly, the syntax for bytes literals is largely the same as that for string
2279
- literals, except that a ``b `` prefix is added:
2278
+ .. class :: bytes([source[, encoding[, errors]]])
2280
2279
2281
- * Single quotes: ``b'still allows embedded "double" quotes' ``
2282
- * Double quotes: ``b"still allows embedded 'single' quotes" ``.
2283
- * Triple quoted: ``b'''3 single quotes''' ``, ``b"""3 double quotes""" ``
2280
+ Firstly, the syntax for bytes literals is largely the same as that for string
2281
+ literals, except that a ``b `` prefix is added:
2284
2282
2285
- Only ASCII characters are permitted in bytes literals (regardless of the
2286
- declared source code encoding). Any binary values over 127 must be entered
2287
- into bytes literals using the appropriate escape sequence.
2283
+ * Single quotes: `` b'still allows embedded "double" quotes' ``
2284
+ * Double quotes: `` b"still allows embedded 'single' quotes" ``.
2285
+ * Triple quoted: `` b'''3 single quotes''' ``, `` b"""3 double quotes""" ``
2288
2286
2289
- As with string literals, bytes literals may also use a `` r `` prefix to disable
2290
- processing of escape sequences. See :ref: ` strings ` for more about the various
2291
- forms of bytes literal, including supported escape sequences .
2287
+ Only ASCII characters are permitted in bytes literals (regardless of the
2288
+ declared source code encoding). Any binary values over 127 must be entered
2289
+ into bytes literals using the appropriate escape sequence .
2292
2290
2293
- While bytes literals and representations are based on ASCII text, bytes
2294
- objects actually behave like immutable sequences of integers, with each
2295
- value in the sequence restricted such that ``0 <= x < 256 `` (attempts to
2296
- violate this restriction will trigger :exc: `ValueError `. This is done
2297
- deliberately to emphasise that while many binary formats include ASCII based
2298
- elements and can be usefully manipulated with some text-oriented algorithms,
2299
- this is not generally the case for arbitrary binary data (blindly applying
2300
- text processing algorithms to binary data formats that are not ASCII
2301
- compatible will usually lead to data corruption).
2291
+ As with string literals, bytes literals may also use a ``r `` prefix to disable
2292
+ processing of escape sequences. See :ref: `strings ` for more about the various
2293
+ forms of bytes literal, including supported escape sequences.
2302
2294
2303
- In addition to the literal forms, bytes objects can be created in a number of
2304
- other ways:
2295
+ While bytes literals and representations are based on ASCII text, bytes
2296
+ objects actually behave like immutable sequences of integers, with each
2297
+ value in the sequence restricted such that ``0 <= x < 256 `` (attempts to
2298
+ violate this restriction will trigger :exc: `ValueError `. This is done
2299
+ deliberately to emphasise that while many binary formats include ASCII based
2300
+ elements and can be usefully manipulated with some text-oriented algorithms,
2301
+ this is not generally the case for arbitrary binary data (blindly applying
2302
+ text processing algorithms to binary data formats that are not ASCII
2303
+ compatible will usually lead to data corruption).
2305
2304
2306
- * A zero-filled bytes object of a specified length: ``bytes(10) ``
2307
- * From an iterable of integers: ``bytes(range(20)) ``
2308
- * Copying existing binary data via the buffer protocol: ``bytes(obj) ``
2305
+ In addition to the literal forms, bytes objects can be created in a number of
2306
+ other ways:
2309
2307
2310
- Also see the :ref: `bytes <func-bytes >` built-in.
2308
+ * A zero-filled bytes object of a specified length: ``bytes(10) ``
2309
+ * From an iterable of integers: ``bytes(range(20)) ``
2310
+ * Copying existing binary data via the buffer protocol: ``bytes(obj) ``
2311
2311
2312
- Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal
2313
- numbers are a commonly used format for describing binary data. Accordingly,
2314
- the bytes type has an additional class method to read data in that format:
2312
+ Also see the :ref: `bytes <func-bytes >` built-in.
2315
2313
2316
- .. classmethod :: bytes.fromhex(string)
2314
+ Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal
2315
+ numbers are a commonly used format for describing binary data. Accordingly,
2316
+ the bytes type has an additional class method to read data in that format:
2317
2317
2318
- This :class: `bytes ` class method returns a bytes object, decoding the
2319
- given string object. The string must contain two hexadecimal digits per
2320
- byte, with ASCII whitespace being ignored.
2318
+ .. classmethod :: fromhex(string)
2321
2319
2322
- >>> bytes .fromhex(' 2Ef0 F1f2 ' )
2323
- b'.\xf0\xf1\xf2'
2320
+ This :class: `bytes ` class method returns a bytes object, decoding the
2321
+ given string object. The string must contain two hexadecimal digits per
2322
+ byte, with ASCII whitespace being ignored.
2324
2323
2325
- .. versionchanged :: 3.7
2326
- :meth: `bytes.fromhex ` now skips all ASCII whitespace in the string,
2327
- not just spaces.
2324
+ >>> bytes .fromhex(' 2Ef0 F1f2 ' )
2325
+ b'.\xf0\xf1\xf2'
2328
2326
2329
- A reverse conversion function exists to transform a bytes object into its
2330
- hexadecimal representation.
2327
+ .. versionchanged :: 3.7
2328
+ :meth: `bytes.fromhex ` now skips all ASCII whitespace in the string,
2329
+ not just spaces.
2331
2330
2332
- .. method :: bytes.hex()
2331
+ A reverse conversion function exists to transform a bytes object into its
2332
+ hexadecimal representation.
2333
2333
2334
- Return a string object containing two hexadecimal digits for each
2335
- byte in the instance.
2334
+ .. method :: hex()
2336
2335
2337
- >>> b ' \xf0\xf1\xf2 ' .hex()
2338
- 'f0f1f2'
2336
+ Return a string object containing two hexadecimal digits for each
2337
+ byte in the instance.
2339
2338
2340
- .. versionadded :: 3.5
2339
+ >>> b ' \xf0\xf1\xf2 ' .hex()
2340
+ 'f0f1f2'
2341
+
2342
+ .. versionadded :: 3.5
2341
2343
2342
2344
Since bytes objects are sequences of integers (akin to a tuple), for a bytes
2343
2345
object *b *, ``b[0] `` will be an integer, while ``b[0:1] `` will be a bytes
@@ -2367,49 +2369,53 @@ Bytearray Objects
2367
2369
.. index :: object: bytearray
2368
2370
2369
2371
:class: `bytearray ` objects are a mutable counterpart to :class: `bytes `
2370
- objects. There is no dedicated literal syntax for bytearray objects, instead
2371
- they are always created by calling the constructor:
2372
+ objects.
2372
2373
2373
- * Creating an empty instance: ``bytearray() ``
2374
- * Creating a zero-filled instance with a given length: ``bytearray(10) ``
2375
- * From an iterable of integers: ``bytearray(range(20)) ``
2376
- * Copying existing binary data via the buffer protocol: ``bytearray(b'Hi!') ``
2374
+ .. class :: bytearray([source[, encoding[, errors]]])
2377
2375
2378
- As bytearray objects are mutable, they support the
2379
- :ref: `mutable <typesseq-mutable >` sequence operations in addition to the
2380
- common bytes and bytearray operations described in :ref: `bytes-methods `.
2376
+ There is no dedicated literal syntax for bytearray objects, instead
2377
+ they are always created by calling the constructor:
2381
2378
2382
- Also see the :ref: `bytearray <func-bytearray >` built-in.
2379
+ * Creating an empty instance: ``bytearray() ``
2380
+ * Creating a zero-filled instance with a given length: ``bytearray(10) ``
2381
+ * From an iterable of integers: ``bytearray(range(20)) ``
2382
+ * Copying existing binary data via the buffer protocol: ``bytearray(b'Hi!') ``
2383
2383
2384
- Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal
2385
- numbers are a commonly used format for describing binary data. Accordingly,
2386
- the bytearray type has an additional class method to read data in that format:
2384
+ As bytearray objects are mutable, they support the
2385
+ :ref: ` mutable < typesseq-mutable >` sequence operations in addition to the
2386
+ common bytes and bytearray operations described in :ref: ` bytes-methods `.
2387
2387
2388
- .. classmethod :: bytearray.fromhex(string)
2388
+ Also see the :ref: ` bytearray < func- bytearray>` built-in.
2389
2389
2390
- This :class: ` bytearray ` class method returns bytearray object, decoding
2391
- the given string object. The string must contain two hexadecimal digits
2392
- per byte, with ASCII whitespace being ignored.
2390
+ Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal
2391
+ numbers are a commonly used format for describing binary data. Accordingly,
2392
+ the bytearray type has an additional class method to read data in that format:
2393
2393
2394
- >>> bytearray .fromhex(' 2Ef0 F1f2 ' )
2395
- bytearray(b'.\xf0\xf1\xf2')
2394
+ .. classmethod :: fromhex(string)
2396
2395
2397
- .. versionchanged :: 3.7
2398
- :meth: ` bytearray.fromhex ` now skips all ASCII whitespace in the string,
2399
- not just spaces .
2396
+ This :class: ` bytearray ` class method returns bytearray object, decoding
2397
+ the given string object. The string must contain two hexadecimal digits
2398
+ per byte, with ASCII whitespace being ignored .
2400
2399
2401
- A reverse conversion function exists to transform a bytearray object into its
2402
- hexadecimal representation.
2400
+ >>> bytearray .fromhex( ' 2Ef0 F1f2 ' )
2401
+ bytearray(b'.\xf0\xf1\xf2')
2403
2402
2404
- .. method :: bytearray.hex()
2403
+ .. versionchanged :: 3.7
2404
+ :meth: `bytearray.fromhex ` now skips all ASCII whitespace in the string,
2405
+ not just spaces.
2405
2406
2406
- Return a string object containing two hexadecimal digits for each
2407
- byte in the instance .
2407
+ A reverse conversion function exists to transform a bytearray object into its
2408
+ hexadecimal representation .
2408
2409
2409
- >>> bytearray (b ' \xf0\xf1\xf2 ' ).hex()
2410
- 'f0f1f2'
2410
+ .. method :: hex()
2411
+
2412
+ Return a string object containing two hexadecimal digits for each
2413
+ byte in the instance.
2411
2414
2412
- .. versionadded :: 3.5
2415
+ >>> bytearray (b ' \xf0\xf1\xf2 ' ).hex()
2416
+ 'f0f1f2'
2417
+
2418
+ .. versionadded :: 3.5
2413
2419
2414
2420
Since bytearray objects are sequences of integers (akin to a list), for a
2415
2421
bytearray object *b *, ``b[0] `` will be an integer, while ``b[0:1] `` will be
0 commit comments