|
19 | 19 | "from plotly import figure_factory\n",
|
20 | 20 | "from plotly import graph_objects\n",
|
21 | 21 | "import plotly.express as px\n",
|
22 |
| - "import plotly.io as pio\n", |
23 | 22 | "from IPython.core.magic import Magics, magics_class, cell_magic\n",
|
24 | 23 | "\n",
|
25 | 24 | "from IPython.display import Image\n",
|
|
45 | 44 | ") # for plotnine\n",
|
46 | 45 | "\n",
|
47 | 46 | "\n",
|
48 |
| - "fig = graph_objects.Figure(layout = dict(width=100, height=100))\n", |
49 |
| - "\n", |
50 |
| - "templated_fig = pio.to_templated(fig)\n", |
51 |
| - "pio.templates['my_template'] = templated_fig.layout.template\n", |
52 |
| - "pio.templates.default = 'my_template'\n", |
53 |
| - "px.defaults.width = 100\n", |
54 |
| - "px.defaults.height = 100\n", |
| 47 | + "import plotly.io as pio\n", |
55 | 48 | "pio.renderers.default = \"png\"\n",
|
56 |
| - "pio.renderers[\"png\"].width = 900\n", |
57 |
| - "pio.renderers[\"png\"].height = 900\n", |
| 49 | + "pio.renderers[\"png\"].width = 750\n", |
| 50 | + "pio.renderers[\"png\"].height = 750\n", |
58 | 51 | "\n",
|
59 | 52 | "alt.renderers.enable('png', webdriver='firefox')"
|
60 | 53 | ]
|
|
292 | 285 | },
|
293 | 286 | "outputs": [],
|
294 | 287 | "source": [
|
295 |
| - "px.histogram(mpg, y=\"manufacturer\", \n", |
296 |
| - " title='Number of Cars by Make')" |
| 288 | + "px.histogram(\n", |
| 289 | + " mpg, y=\"manufacturer\", \n", |
| 290 | + " title='Number of Cars by Make'\n", |
| 291 | + ")" |
297 | 292 | ]
|
298 | 293 | },
|
299 | 294 | {
|
|
407 | 402 | },
|
408 | 403 | "outputs": [],
|
409 | 404 | "source": [
|
410 |
| - "px.histogram(mpg, x=\"cty\")" |
| 405 | + "px.histogram(\n", |
| 406 | + " mpg, x=\"cty\"\n", |
| 407 | + ")" |
411 | 408 | ]
|
412 | 409 | },
|
413 | 410 | {
|
|
538 | 535 | },
|
539 | 536 | "outputs": [],
|
540 | 537 | "source": [
|
541 |
| - "px.scatter(mpg, x=\"displ\", y=\"hwy\", \n", |
542 |
| - " title='Engine Displacement in Liters vs Highway MPG',\n", |
543 |
| - " labels=dict(\n", |
544 |
| - " displ='Engine Displacement in Liters', \n", |
545 |
| - " hwy='Highway MPG')\n", |
546 |
| - " )" |
| 538 | + "px.scatter(\n", |
| 539 | + " mpg, x=\"displ\", y=\"hwy\", \n", |
| 540 | + " title='Engine Displacement in Liters vs Highway MPG',\n", |
| 541 | + " labels=dict(\n", |
| 542 | + " displ='Engine Displacement in Liters', \n", |
| 543 | + " hwy='Highway MPG')\n", |
| 544 | + ")" |
547 | 545 | ]
|
548 | 546 | },
|
549 | 547 | {
|
|
682 | 680 | "fig.add_trace(p2)\n",
|
683 | 681 | "fig.add_trace(p3)\n",
|
684 | 682 | "fig.add_trace(p4)\n",
|
685 |
| - "Image(fig.to_image(format=\"png\", width=900, height=900))" |
| 683 | + "Image(fig.to_image(format=\"png\", width=750, height=750))" |
686 | 684 | ]
|
687 | 685 | },
|
688 | 686 | {
|
|
821 | 819 | },
|
822 | 820 | "outputs": [],
|
823 | 821 | "source": [
|
824 |
| - "px.scatter(mpg, x=\"displ\", y=\"hwy\", color=\"class\", \n", |
825 |
| - " title='Engine Displacement in Liters vs Highway MPG',\n", |
826 |
| - " labels=dict(\n", |
827 |
| - " displ='Engine Displacement in Liters', \n", |
828 |
| - " hwy='Highway MPG')\n", |
829 |
| - " )" |
| 822 | + "px.scatter(\n", |
| 823 | + " mpg, x=\"displ\", y=\"hwy\", color=\"class\", \n", |
| 824 | + " title='Engine Displacement in Liters vs Highway MPG',\n", |
| 825 | + " labels=dict(\n", |
| 826 | + " displ='Engine Displacement in Liters', \n", |
| 827 | + " hwy='Highway MPG')\n", |
| 828 | + ")" |
830 | 829 | ]
|
831 | 830 | },
|
832 | 831 | {
|
|
869 | 868 | "(\n",
|
870 | 869 | " alt.Chart(\n",
|
871 | 870 | " mpg,\n",
|
872 |
| - " title=\"Engine Displacement in Liters vs Highway MPG\",\n", |
| 871 | + " title=\"City MPG vs Highway MPG\",\n", |
873 | 872 | " )\n",
|
874 | 873 | " .mark_circle(opacity=0.3)\n",
|
875 | 874 | " .encode(\n",
|
|
907 | 906 | " y='hwy', \n",
|
908 | 907 | " s=10*mpg['cyl'],\n",
|
909 | 908 | " alpha=.5))\n",
|
910 |
| - "ax.set_title('Engine Displacement in Liters vs Highway MPG')\n", |
911 |
| - "ax.set_xlabel('Engine Displacement in Liters')\n", |
| 909 | + "ax.set_title('City MPG vs Highway MPG')\n", |
| 910 | + "ax.set_xlabel('City MPG')\n", |
912 | 911 | "ax.set_ylabel('Highway MPG');"
|
913 | 912 | ]
|
914 | 913 | },
|
|
941 | 940 | },
|
942 | 941 | "outputs": [],
|
943 | 942 | "source": [
|
944 |
| - "px.scatter(mpg, x=\"cty\", y=\"hwy\", size=\"cyl\", size_max=10,\n", |
945 |
| - " title='City MPG vs Highway MPG',\n", |
946 |
| - " labels=dict(cty='City MPG', hwy='Highway MPG')\n", |
947 |
| - " )" |
| 943 | + "px.scatter(\n", |
| 944 | + " mpg, x=\"cty\", y=\"hwy\", \n", |
| 945 | + " size=\"cyl\", size_max=10,\n", |
| 946 | + " title='City MPG vs Highway MPG',\n", |
| 947 | + " labels=dict(cty='City MPG', hwy='Highway MPG')\n", |
| 948 | + ")" |
948 | 949 | ]
|
949 | 950 | },
|
950 | 951 | {
|
|
1045 | 1046 | },
|
1046 | 1047 | "outputs": [],
|
1047 | 1048 | "source": [
|
1048 |
| - "px.scatter(mpg, x=\"displ\", y=\"hwy\", facet_col=\"class\", facet_col_wrap=4)" |
| 1049 | + "px.scatter(\n", |
| 1050 | + " mpg, x=\"displ\", y=\"hwy\", \n", |
| 1051 | + " facet_col=\"class\", facet_col_wrap=4\n", |
| 1052 | + ")" |
1049 | 1053 | ]
|
1050 | 1054 | },
|
1051 | 1055 | {
|
|
1150 | 1154 | },
|
1151 | 1155 | "outputs": [],
|
1152 | 1156 | "source": [
|
1153 |
| - "px.scatter(mpg, x=\"displ\", y=\"hwy\", \n", |
1154 |
| - " facet_col=\"cyl\", facet_row=\"drv\",\n", |
1155 |
| - " category_orders=dict(cyl=[4,5,6,8]))" |
| 1157 | + "px.scatter(\n", |
| 1158 | + " mpg, x=\"displ\", y=\"hwy\", \n", |
| 1159 | + " facet_col=\"cyl\", facet_row=\"drv\",\n", |
| 1160 | + " category_orders=dict(cyl=[4,5,6,8])\n", |
| 1161 | + ")" |
1156 | 1162 | ]
|
1157 | 1163 | },
|
1158 | 1164 | {
|
|
1302 | 1308 | " }\n",
|
1303 | 1309 | " }\n",
|
1304 | 1310 | "})\n",
|
1305 |
| - "Image(fig.to_image(format=\"png\", width=900, height=900))" |
| 1311 | + "Image(fig.to_image(format=\"png\", width=750, height=750))" |
1306 | 1312 | ]
|
1307 | 1313 | },
|
1308 | 1314 | {
|
|
1390 | 1396 | },
|
1391 | 1397 | "outputs": [],
|
1392 | 1398 | "source": [
|
1393 |
| - "px.histogram(diamonds, x=\"cut\", color=\"clarity\",\n", |
1394 |
| - " category_orders=dict(cut=[\n", |
1395 |
| - " \"Fair\", \"Good\", \"Very Good\", \n", |
1396 |
| - " \"Premium\", \"Ideal\"])\n", |
1397 |
| - " )" |
| 1399 | + "px.histogram(\n", |
| 1400 | + " diamonds, x=\"cut\", color=\"clarity\",\n", |
| 1401 | + " category_orders=dict(cut=[\n", |
| 1402 | + " \"Fair\", \"Good\", \"Very Good\", \n", |
| 1403 | + " \"Premium\", \"Ideal\"])\n", |
| 1404 | + ")" |
1398 | 1405 | ]
|
1399 | 1406 | },
|
1400 | 1407 | {
|
|
1485 | 1492 | },
|
1486 | 1493 | "outputs": [],
|
1487 | 1494 | "source": [
|
1488 |
| - "px.histogram(diamonds, x=\"cut\", color=\"clarity\", barmode=\"group\",\n", |
1489 |
| - " category_orders=dict(cut=[\n", |
1490 |
| - " \"Fair\", \"Good\", \"Very Good\", \n", |
1491 |
| - " \"Premium\", \"Ideal\"])\n", |
1492 |
| - " )" |
| 1495 | + "px.histogram(\n", |
| 1496 | + " diamonds, x=\"cut\", color=\"clarity\", barmode=\"group\",\n", |
| 1497 | + " category_orders=dict(cut=[\n", |
| 1498 | + " \"Fair\", \"Good\", \"Very Good\", \n", |
| 1499 | + " \"Premium\", \"Ideal\"])\n", |
| 1500 | + ")" |
1493 | 1501 | ]
|
1494 | 1502 | },
|
1495 | 1503 | {
|
|
1624 | 1632 | ")\n",
|
1625 | 1633 | "for d in fig[\"data\"]:\n",
|
1626 | 1634 | " d.update({\"fill\": \"tozeroy\"})\n",
|
1627 |
| - "Image(fig.to_image(format=\"png\", width=900, height=900))" |
| 1635 | + "Image(fig.to_image(format=\"png\", width=750, height=750))" |
1628 | 1636 | ]
|
1629 | 1637 | },
|
1630 | 1638 | {
|
|
1687 | 1695 | },
|
1688 | 1696 | "outputs": [],
|
1689 | 1697 | "source": [
|
1690 |
| - "px.line(ts, x=\"date\", y=\"value\")" |
| 1698 | + "px.line(\n", |
| 1699 | + " ts, x=\"date\", y=\"value\"\n", |
| 1700 | + ")" |
1691 | 1701 | ]
|
1692 | 1702 | },
|
1693 | 1703 | {
|
|
0 commit comments