|
1 | 1 | # 5. Regressor
|
2 | 2 |
|
| 3 | + |
| 4 | + |
| 5 | +<figure><img src="../.gitbook/assets/image.png" alt="" width="209"><figcaption></figcaption></figure> |
| 6 | + |
| 7 | +1. Click on the _**Regressor**_ in the _**Machine Learning**_ category. |
| 8 | + |
| 9 | + |
| 10 | + |
| 11 | +<figure><img src="../.gitbook/assets/image (1).png" alt="" width="563"><figcaption></figcaption></figure> |
| 12 | + |
| 13 | +2. _**Model Type**_: Choose the regression model. |
| 14 | + |
| 15 | +* [Linear Regression](5.-regressor.md#linear-regression) |
| 16 | +* [Ridge / Lasso](5.-regressor.md#ridge-lasso) |
| 17 | +* [ElasticNet](5.-regressor.md#elasticnet) |
| 18 | +* [SVR(SupportVectorMachine Regressor)](5.-regressor.md#svr-supportvectormachine-regressor) |
| 19 | +* [DecisionTree Regressor](5.-regressor.md#decisiontree-regressor) |
| 20 | +* [RandomForest Regressor](5.-regressor.md#randomforest-regressor) |
| 21 | +* [GradientBoosting Regressor](5.-regressor.md#gradientboosting-regressor) |
| 22 | +* [XGB Regressor](5.-regressor.md#xgb-regressor) |
| 23 | +* [LGBM Regressor](5.-regressor.md#lgbm-regressor) |
| 24 | +* [CatBoost Regressor](5.-regressor.md#catboost-regressor) |
| 25 | + |
| 26 | +3. _**Allocate to**_: Enter the variable name to assign to the created machine learning model. |
| 27 | +4. _**Code View**_: Preview the generated code. |
| 28 | +5. _**Run**_: Execute the code. |
| 29 | + |
| 30 | + |
| 31 | + |
| 32 | +*** |
| 33 | + |
| 34 | +### Linear Regression |
| 35 | + |
| 36 | + |
| 37 | + |
| 38 | +<figure><img src="../.gitbook/assets/image (2).png" alt="" width="563"><figcaption></figcaption></figure> |
| 39 | + |
| 40 | +1. _**Fit Intercept**_: Choose whether to include the intercept. |
| 41 | + |
| 42 | + |
| 43 | + |
| 44 | +*** |
| 45 | + |
| 46 | +### Ridge / Lasso |
| 47 | + |
| 48 | + |
| 49 | + |
| 50 | +<figure><img src="../.gitbook/assets/image (3).png" alt="" width="563"><figcaption></figcaption></figure> |
| 51 | + |
| 52 | +1. _**Alpha**_: Adjust the level of regularization. |
| 53 | + |
| 54 | + |
| 55 | + |
| 56 | +*** |
| 57 | + |
| 58 | +### ElasticNet |
| 59 | + |
| 60 | + |
| 61 | + |
| 62 | +<figure><img src="../.gitbook/assets/image (4).png" alt="" width="563"><figcaption></figcaption></figure> |
| 63 | + |
| 64 | +1. _**Alpha**_: Adjust the level of regularization. |
| 65 | +2. _**L1 ratio**_: Adjusts the balance (ratio) between _**L1 (Lasso)**_ and _**L2 (Ridge)**_ regularization. |
| 66 | + |
| 67 | + |
| 68 | + |
| 69 | +*** |
| 70 | + |
| 71 | +### SVR(SupportVectorMachine Regressor) |
| 72 | + |
| 73 | + |
| 74 | + |
| 75 | +<figure><img src="../.gitbook/assets/image (5).png" alt="" width="563"><figcaption></figcaption></figure> |
| 76 | + |
| 77 | +1. _**C**_: Represents the degree of freedom for model regularization. Higher values of C make the model more complex, fitting the training data more closely. |
| 78 | +2. _**Kernel**_: Function mapping data to a higher-dimensional space, controlling model complexity. |
| 79 | + |
| 80 | +* _**Degree(Poly)**_: Determines the degree of polynomial. |
| 81 | +* _**Gamma(Poly, rbf, sigmoid)**_: Adjusts the curvature of the decision boundary. |
| 82 | +* _**Coef0(Poly, sigmoid)**_: Additional parameter for the kernel, controlling the offset. Higher values fit the training data more closely. |
| 83 | + |
| 84 | +3. _**Random state**_: Sets the seed value for the random number generator used in model training. |
| 85 | + |
| 86 | + |
| 87 | + |
| 88 | +*** |
| 89 | + |
| 90 | +### DecisionTree Regressor |
| 91 | + |
| 92 | + |
| 93 | + |
| 94 | +<figure><img src="../.gitbook/assets/image (6).png" alt="" width="563"><figcaption></figcaption></figure> |
| 95 | + |
| 96 | +1. _**Criterion**_: Specifies the measure used for node splitting. |
| 97 | +2. _**Max depth**_: Specifies the maximum depth of the tree. |
| 98 | +3. _**Min Samples Split**_: Specifies the minimum number of samples required to split a node. |
| 99 | +4. _**Random state**_: Sets the seed value for the random number generator used in model training. |
| 100 | + |
| 101 | + |
| 102 | + |
| 103 | +*** |
| 104 | + |
| 105 | +### RandomForest Regressor |
| 106 | + |
| 107 | + |
| 108 | + |
| 109 | +<figure><img src="../.gitbook/assets/image (7).png" alt="" width="563"><figcaption></figcaption></figure> |
| 110 | + |
| 111 | +1. _**N estimators**_: Specifies the number of trees in the ensemble. |
| 112 | +2. _**Criterion**_: Specifies the measure used for node splitting. |
| 113 | +3. _**Max depth**_: Specifies the maximum depth of the tree. |
| 114 | +4. _**Min Samples Split**_: Specifies the minimum number of samples required to split a node. |
| 115 | +5. _**N jobs**_: Specifies the number of CPU cores or threads to be used during model training. |
| 116 | +6. _**Random State**_: Sets the seed value for the random number generator used in model training. |
| 117 | + |
| 118 | + |
| 119 | + |
| 120 | +*** |
| 121 | + |
| 122 | +### GradientBoosting Regressor |
| 123 | + |
| 124 | + |
| 125 | + |
| 126 | +<figure><img src="../.gitbook/assets/image (8).png" alt="" width="563"><figcaption></figcaption></figure> |
| 127 | + |
| 128 | +1. _**Loss**_: Specifies the loss function used. |
| 129 | +2. _**Learning rate**_: Specifies the learning rate. |
| 130 | +3. _**N estimators**_: Specifies the number of trees in the ensemble. |
| 131 | +4. _**Criterion**_: Specifies the measure used for node splitting. |
| 132 | +5. _**Random State**_: Sets the seed value for the random number generator used in model training. |
| 133 | + |
| 134 | + |
| 135 | + |
| 136 | +*** |
| 137 | + |
| 138 | +### XGB Regressor |
| 139 | + |
| 140 | + |
| 141 | + |
| 142 | +<figure><img src="../.gitbook/assets/image (10).png" alt="" width="563"><figcaption></figcaption></figure> |
| 143 | + |
| 144 | +1. _**N estimators**_: Specifies the number of trees in the ensemble. |
| 145 | +2. _**Max depth**_: Specifies the maximum depth of the tree. |
| 146 | +3. _**Learning rate**_: Specifies the learning rate. |
| 147 | +4. _**Gamma**_: Specifies the minimum loss reduction required to make a further partition. |
| 148 | +5. _**Random State**_: Sets the seed value for the random number generator used in model training. |
| 149 | + |
| 150 | + |
| 151 | + |
| 152 | +*** |
| 153 | + |
| 154 | +### LGBM Regressor |
| 155 | + |
| 156 | + |
| 157 | + |
| 158 | +<figure><img src="../.gitbook/assets/image (11).png" alt="" width="563"><figcaption></figcaption></figure> |
| 159 | + |
| 160 | +1. _**Boosting type**_: Specifies the boosting type used in the algorithm. |
| 161 | +2. _**Max depth**_: Specifies the maximum depth of the tree. |
| 162 | +3. _**Learning Rate**_: Specifies the learning rate. |
| 163 | +4. _**N estimators**_: Specifies the number of trees in the ensemble. |
| 164 | +5. _**Random State**_: Sets the seed value for the random number generator used in model training. |
| 165 | + |
| 166 | + |
| 167 | + |
| 168 | +*** |
| 169 | + |
| 170 | +### CatBoost Regressor |
| 171 | + |
| 172 | + |
| 173 | + |
| 174 | +<figure><img src="../.gitbook/assets/image (12).png" alt="" width="563"><figcaption></figcaption></figure> |
| 175 | + |
| 176 | +1. _**Learning rate**_: Specifies the learning rate. |
| 177 | +2. _**Loss function**_: Specifies the loss function used. |
| 178 | +3. _**Task Type**_: Specifies the hardware used for data processing. |
| 179 | +4. _**Max Depth**_: Specifies the maximum depth of the tree. |
| 180 | +5. _**N estimators**_: Specifies the number of trees in the ensemble. |
| 181 | +6. _**Random State**_: Sets the seed value for the random number generator used in model training. |
| 182 | + |
0 commit comments