@@ -510,7 +510,15 @@ define([
510
510
options : [
511
511
{ name : 'importance_featureData' , label : 'Feature Data' , component : [ 'data_select' ] , var_type : [ 'DataFrame' , 'Series' , 'ndarray' , 'list' , 'dict' ] , value : 'X_train' } ,
512
512
{ name : 'importance_targetData' , label : 'Target Data' , component : [ 'data_select' ] , var_type : [ 'DataFrame' , 'Series' , 'ndarray' , 'list' , 'dict' ] , value : 'y_train' } ,
513
- { name : 'scoring' , component : [ 'input' ] , usePair : true } ,
513
+ { name : 'scoring' , component : [ 'option_suggest' ] , usePair : true , type : 'text' ,
514
+ options : [
515
+ 'explained_variance' , 'max_error' , 'neg_mean_absolute_error' , 'neg_mean_squared_error' , 'neg_root_mean_squared_error' ,
516
+ 'neg_mean_squared_log_error' , 'neg_median_absolute_error' , 'r2' , 'neg_mean_poisson_deviance' , 'neg_mean_gamma_deviance' ,
517
+ 'neg_mean_absolute_percentage_error' ,
518
+ 'accuracy' , 'balanced_accuracy' , 'top_k_accuracy' , 'average_precision' , 'neg_brier_score' ,
519
+ 'f1' , 'f1_micro' , 'f1_macro' , 'f1_weighted' , 'f1_samples' , 'neg_log_loss' , 'precision' , 'recall' , 'jaccard' ,
520
+ 'roc_auc' , 'roc_auc_ovr' , 'roc_auc_ovo' , 'roc_auc_ovr_weighted' , 'roc_auc_ovo_weighted'
521
+ ] } ,
514
522
{ name : 'sort' , label : 'Sort data' , component : [ 'bool_checkbox' ] , value : true , usePair : true } ,
515
523
{ name : 'importance_allocate' , label : 'Allocate to' , component : [ 'input' ] , placeholder : 'New variable' , value : 'importances' }
516
524
]
@@ -524,7 +532,15 @@ define([
524
532
options : [
525
533
{ name : 'importance_featureData' , label : 'Feature Data' , component : [ 'data_select' ] , var_type : [ 'DataFrame' , 'Series' , 'ndarray' , 'list' , 'dict' ] , value : 'X_train' } ,
526
534
{ name : 'importance_targetData' , label : 'Target Data' , component : [ 'data_select' ] , var_type : [ 'DataFrame' , 'Series' , 'ndarray' , 'list' , 'dict' ] , value : 'y_train' } ,
527
- { name : 'scoring' , component : [ 'input' ] , usePair : true } ,
535
+ { name : 'scoring' , component : [ 'option_suggest' ] , usePair : true , type : 'text' ,
536
+ options : [
537
+ 'explained_variance' , 'max_error' , 'neg_mean_absolute_error' , 'neg_mean_squared_error' , 'neg_root_mean_squared_error' ,
538
+ 'neg_mean_squared_log_error' , 'neg_median_absolute_error' , 'r2' , 'neg_mean_poisson_deviance' , 'neg_mean_gamma_deviance' ,
539
+ 'neg_mean_absolute_percentage_error' ,
540
+ 'accuracy' , 'balanced_accuracy' , 'top_k_accuracy' , 'average_precision' , 'neg_brier_score' ,
541
+ 'f1' , 'f1_micro' , 'f1_macro' , 'f1_weighted' , 'f1_samples' , 'neg_log_loss' , 'precision' , 'recall' , 'jaccard' ,
542
+ 'roc_auc' , 'roc_auc_ovr' , 'roc_auc_ovo' , 'roc_auc_ovr_weighted' , 'roc_auc_ovo_weighted'
543
+ ] } ,
528
544
{ name : 'sort' , label : 'Sort data' , component : [ 'bool_checkbox' ] , value : true , usePair : true } ,
529
545
{ name : 'top_count' , label : 'Top count' , component : [ 'input_number' ] , min : 0 , usePair : true }
530
546
]
@@ -668,7 +684,44 @@ define([
668
684
{ name : 'cvs_allocate' , label : 'Allocate to' , component : [ 'input' ] , placeholder : 'New variable' , value : 'scores' }
669
685
]
670
686
} ,
671
- 'permutation_importance' : defaultInfos [ 'permutation_importance' ] ,
687
+ 'permutation_importance' : {
688
+ name : 'permutation_importance' ,
689
+ label : 'Permutation importance' ,
690
+ import : 'from sklearn.inspection import permutation_importance' ,
691
+ code : '${importance_allocate} = vp_create_permutation_importances(${model}, ${importance_featureData}, ${importance_targetData}${scoring}${sort})' ,
692
+ description : 'Permutation importance for feature evaluation.' ,
693
+ options : [
694
+ { name : 'importance_featureData' , label : 'Feature Data' , component : [ 'data_select' ] , var_type : [ 'DataFrame' , 'Series' , 'ndarray' , 'list' , 'dict' ] , value : 'X_train' } ,
695
+ { name : 'importance_targetData' , label : 'Target Data' , component : [ 'data_select' ] , var_type : [ 'DataFrame' , 'Series' , 'ndarray' , 'list' , 'dict' ] , value : 'y_train' } ,
696
+ { name : 'scoring' , component : [ 'option_suggest' ] , usePair : true , type : 'text' ,
697
+ options : [
698
+ 'explained_variance' , 'max_error' , 'neg_mean_absolute_error' , 'neg_mean_squared_error' , 'neg_root_mean_squared_error' ,
699
+ 'neg_mean_squared_log_error' , 'neg_median_absolute_error' , 'r2' , 'neg_mean_poisson_deviance' , 'neg_mean_gamma_deviance' ,
700
+ 'neg_mean_absolute_percentage_error'
701
+ ] } ,
702
+ { name : 'sort' , label : 'Sort data' , component : [ 'bool_checkbox' ] , value : true , usePair : true } ,
703
+ { name : 'importance_allocate' , label : 'Allocate to' , component : [ 'input' ] , placeholder : 'New variable' , value : 'importances' }
704
+ ]
705
+ } ,
706
+ 'plot_permutation_importance' : {
707
+ name : 'plot_permutation_importance' ,
708
+ label : 'Plot permutation importance' ,
709
+ import : 'from sklearn.inspection import permutation_importance' ,
710
+ code : 'vp_plot_permutation_importances(${model}, ${importance_featureData}, ${importance_targetData}${scoring}${sort}${top_count})' ,
711
+ description : 'Permutation importance for feature evaluation.' ,
712
+ options : [
713
+ { name : 'importance_featureData' , label : 'Feature Data' , component : [ 'data_select' ] , var_type : [ 'DataFrame' , 'Series' , 'ndarray' , 'list' , 'dict' ] , value : 'X_train' } ,
714
+ { name : 'importance_targetData' , label : 'Target Data' , component : [ 'data_select' ] , var_type : [ 'DataFrame' , 'Series' , 'ndarray' , 'list' , 'dict' ] , value : 'y_train' } ,
715
+ { name : 'scoring' , component : [ 'option_suggest' ] , usePair : true , type : 'text' ,
716
+ options : [
717
+ 'explained_variance' , 'max_error' , 'neg_mean_absolute_error' , 'neg_mean_squared_error' , 'neg_root_mean_squared_error' ,
718
+ 'neg_mean_squared_log_error' , 'neg_median_absolute_error' , 'r2' , 'neg_mean_poisson_deviance' , 'neg_mean_gamma_deviance' ,
719
+ 'neg_mean_absolute_percentage_error'
720
+ ] } ,
721
+ { name : 'sort' , label : 'Sort data' , component : [ 'bool_checkbox' ] , value : true , usePair : true } ,
722
+ { name : 'top_count' , label : 'Top count' , component : [ 'input_number' ] , min : 0 , usePair : true }
723
+ ]
724
+ } ,
672
725
'Coefficient' : {
673
726
name : 'coef_' ,
674
727
label : 'Coefficient' ,
@@ -754,7 +807,44 @@ define([
754
807
{ name : 'auc_targetData' , label : 'Target Data' , component : [ 'data_select' ] , var_type : [ 'DataFrame' , 'Series' , 'ndarray' , 'list' , 'dict' ] , value : 'y_test' }
755
808
]
756
809
} ,
757
- 'permutation_importance' : defaultInfos [ 'permutation_importance' ]
810
+ 'permutation_importance' : {
811
+ name : 'permutation_importance' ,
812
+ label : 'Permutation importance' ,
813
+ import : 'from sklearn.inspection import permutation_importance' ,
814
+ code : '${importance_allocate} = vp_create_permutation_importances(${model}, ${importance_featureData}, ${importance_targetData}${scoring}${sort})' ,
815
+ description : 'Permutation importance for feature evaluation.' ,
816
+ options : [
817
+ { name : 'importance_featureData' , label : 'Feature Data' , component : [ 'data_select' ] , var_type : [ 'DataFrame' , 'Series' , 'ndarray' , 'list' , 'dict' ] , value : 'X_train' } ,
818
+ { name : 'importance_targetData' , label : 'Target Data' , component : [ 'data_select' ] , var_type : [ 'DataFrame' , 'Series' , 'ndarray' , 'list' , 'dict' ] , value : 'y_train' } ,
819
+ { name : 'scoring' , component : [ 'option_suggest' ] , usePair : true , type : 'text' ,
820
+ options : [
821
+ 'accuracy' , 'balanced_accuracy' , 'top_k_accuracy' , 'average_precision' , 'neg_brier_score' ,
822
+ 'f1' , 'f1_micro' , 'f1_macro' , 'f1_weighted' , 'f1_samples' , 'neg_log_loss' , 'precision' , 'recall' , 'jaccard' ,
823
+ 'roc_auc' , 'roc_auc_ovr' , 'roc_auc_ovo' , 'roc_auc_ovr_weighted' , 'roc_auc_ovo_weighted'
824
+ ] } ,
825
+ { name : 'sort' , label : 'Sort data' , component : [ 'bool_checkbox' ] , value : true , usePair : true } ,
826
+ { name : 'importance_allocate' , label : 'Allocate to' , component : [ 'input' ] , placeholder : 'New variable' , value : 'importances' }
827
+ ]
828
+ } ,
829
+ 'plot_permutation_importance' : {
830
+ name : 'plot_permutation_importance' ,
831
+ label : 'Plot permutation importance' ,
832
+ import : 'from sklearn.inspection import permutation_importance' ,
833
+ code : 'vp_plot_permutation_importances(${model}, ${importance_featureData}, ${importance_targetData}${scoring}${sort}${top_count})' ,
834
+ description : 'Permutation importance for feature evaluation.' ,
835
+ options : [
836
+ { name : 'importance_featureData' , label : 'Feature Data' , component : [ 'data_select' ] , var_type : [ 'DataFrame' , 'Series' , 'ndarray' , 'list' , 'dict' ] , value : 'X_train' } ,
837
+ { name : 'importance_targetData' , label : 'Target Data' , component : [ 'data_select' ] , var_type : [ 'DataFrame' , 'Series' , 'ndarray' , 'list' , 'dict' ] , value : 'y_train' } ,
838
+ { name : 'scoring' , component : [ 'option_suggest' ] , usePair : true , type : 'text' ,
839
+ options : [
840
+ 'accuracy' , 'balanced_accuracy' , 'top_k_accuracy' , 'average_precision' , 'neg_brier_score' ,
841
+ 'f1' , 'f1_micro' , 'f1_macro' , 'f1_weighted' , 'f1_samples' , 'neg_log_loss' , 'precision' , 'recall' , 'jaccard' ,
842
+ 'roc_auc' , 'roc_auc_ovr' , 'roc_auc_ovo' , 'roc_auc_ovr_weighted' , 'roc_auc_ovo_weighted'
843
+ ] } ,
844
+ { name : 'sort' , label : 'Sort data' , component : [ 'bool_checkbox' ] , value : true , usePair : true } ,
845
+ { name : 'top_count' , label : 'Top count' , component : [ 'input_number' ] , min : 0 , usePair : true }
846
+ ]
847
+ } ,
758
848
}
759
849
760
850
// feature importances
0 commit comments