|
1 | 1 | # 5. Regressor
|
2 | 2 |
|
3 |
| - |
4 |
| - |
5 |
| -<figure><img src="../.gitbook/assets/image (2).png" alt="" width="209"><figcaption></figcaption></figure> |
| 3 | +<figure><img src="../.gitbook/assets/image (329).png" alt="" width="525"><figcaption></figcaption></figure> |
6 | 4 |
|
7 | 5 | 1. Click on the _**Regressor**_ in the _**Machine Learning**_ category.
|
8 | 6 |
|
9 |
| - |
10 |
| - |
11 |
| -<figure><img src="../.gitbook/assets/image (1) (2).png" alt="" width="563"><figcaption></figcaption></figure> |
| 7 | +<figure><img src="../.gitbook/assets/image (330).png" alt="" width="563"><figcaption></figcaption></figure> |
12 | 8 |
|
13 | 9 | 2. _**Model Type**_: Choose the regression model.
|
14 | 10 |
|
|
33 | 29 |
|
34 | 30 | ### Linear Regression
|
35 | 31 |
|
36 |
| - |
37 |
| - |
38 |
| -<figure><img src="../.gitbook/assets/image (2) (2).png" alt="" width="563"><figcaption></figcaption></figure> |
| 32 | +<figure><img src="../.gitbook/assets/image (331).png" alt="" width="563"><figcaption></figcaption></figure> |
39 | 33 |
|
40 | 34 | 1. _**Fit Intercept**_: Choose whether to include the intercept.
|
41 | 35 |
|
|
45 | 39 |
|
46 | 40 | ### Ridge / Lasso
|
47 | 41 |
|
48 |
| - |
49 |
| - |
50 |
| -<figure><img src="../.gitbook/assets/image (3).png" alt="" width="563"><figcaption></figcaption></figure> |
| 42 | +<figure><img src="../.gitbook/assets/image (332).png" alt="" width="563"><figcaption></figcaption></figure> |
51 | 43 |
|
52 | 44 | 1. _**Alpha**_: Adjust the level of regularization.
|
53 | 45 |
|
|
57 | 49 |
|
58 | 50 | ### ElasticNet
|
59 | 51 |
|
60 |
| - |
61 |
| - |
62 |
| -<figure><img src="../.gitbook/assets/image (4).png" alt="" width="563"><figcaption></figcaption></figure> |
| 52 | +<figure><img src="../.gitbook/assets/image (333).png" alt=""><figcaption></figcaption></figure> |
63 | 53 |
|
64 | 54 | 1. _**Alpha**_: Adjust the level of regularization.
|
65 | 55 | 2. _**L1 ratio**_: Adjusts the balance (ratio) between _**L1 (Lasso)**_ and _**L2 (Ridge)**_ regularization.
|
|
70 | 60 |
|
71 | 61 | ### SVR(SupportVectorMachine Regressor)
|
72 | 62 |
|
73 |
| - |
74 |
| - |
75 |
| -<figure><img src="../.gitbook/assets/image (5).png" alt="" width="563"><figcaption></figcaption></figure> |
| 63 | +<figure><img src="../.gitbook/assets/image (334).png" alt="" width="563"><figcaption></figcaption></figure> |
76 | 64 |
|
77 | 65 | 1. _**C**_: Represents the degree of freedom for model regularization. Higher values of C make the model more complex, fitting the training data more closely.
|
78 | 66 | 2. _**Kernel**_: Function mapping data to a higher-dimensional space, controlling model complexity.
|
79 |
| - |
80 |
| -* _**Degree(Poly)**_: Determines the degree of polynomial. |
81 |
| -* _**Gamma(Poly, rbf, sigmoid)**_: Adjusts the curvature of the decision boundary. |
82 |
| -* _**Coef0(Poly, sigmoid)**_: Additional parameter for the kernel, controlling the offset. Higher values fit the training data more closely. |
83 |
| - |
84 |
| -3. _**Random state**_: Sets the seed value for the random number generator used in model training. |
| 67 | +3. _**Degree(Poly)**_: Determines the degree of polynomial. |
| 68 | +4. _**Gamma(Poly, rbf, sigmoid)**_: Adjusts the curvature of the decision boundary. |
| 69 | +5. _**Coef0(Poly, sigmoid)**_: Additional parameter for the kernel, controlling the offset. Higher values fit the training data more closely. |
| 70 | +6. _**Random state**_: Sets the seed value for the random number generator used in model training. |
85 | 71 |
|
86 | 72 |
|
87 | 73 |
|
88 | 74 | ***
|
89 | 75 |
|
90 | 76 | ### DecisionTree Regressor
|
91 | 77 |
|
92 |
| - |
93 |
| - |
94 |
| -<figure><img src="../.gitbook/assets/image (6).png" alt="" width="563"><figcaption></figcaption></figure> |
| 78 | +<figure><img src="../.gitbook/assets/image (335).png" alt="" width="563"><figcaption></figcaption></figure> |
95 | 79 |
|
96 | 80 | 1. _**Criterion**_: Specifies the measure used for node splitting.
|
97 | 81 | 2. _**Max depth**_: Specifies the maximum depth of the tree.
|
|
104 | 88 |
|
105 | 89 | ### RandomForest Regressor
|
106 | 90 |
|
107 |
| - |
108 |
| - |
109 |
| -<figure><img src="../.gitbook/assets/image (7).png" alt="" width="563"><figcaption></figcaption></figure> |
| 91 | +<figure><img src="../.gitbook/assets/image (336).png" alt="" width="563"><figcaption></figcaption></figure> |
110 | 92 |
|
111 | 93 | 1. _**N estimators**_: Specifies the number of trees in the ensemble.
|
112 | 94 | 2. _**Criterion**_: Specifies the measure used for node splitting.
|
|
121 | 103 |
|
122 | 104 | ### GradientBoosting Regressor
|
123 | 105 |
|
124 |
| - |
125 |
| - |
126 |
| -<figure><img src="../.gitbook/assets/image (8).png" alt="" width="563"><figcaption></figcaption></figure> |
| 106 | +<figure><img src="../.gitbook/assets/image (337).png" alt="" width="563"><figcaption></figcaption></figure> |
127 | 107 |
|
128 | 108 | 1. _**Loss**_: Specifies the loss function used.
|
129 | 109 | 2. _**Learning rate**_: Specifies the learning rate.
|
|
137 | 117 |
|
138 | 118 | ### XGB Regressor
|
139 | 119 |
|
140 |
| - |
141 |
| - |
142 |
| -<figure><img src="../.gitbook/assets/image (10).png" alt="" width="563"><figcaption></figcaption></figure> |
| 120 | +<figure><img src="../.gitbook/assets/image (338).png" alt=""><figcaption></figcaption></figure> |
143 | 121 |
|
144 | 122 | 1. _**N estimators**_: Specifies the number of trees in the ensemble.
|
145 | 123 | 2. _**Max depth**_: Specifies the maximum depth of the tree.
|
|
153 | 131 |
|
154 | 132 | ### LGBM Regressor
|
155 | 133 |
|
156 |
| - |
157 |
| - |
158 |
| -<figure><img src="../.gitbook/assets/image (11).png" alt="" width="563"><figcaption></figcaption></figure> |
| 134 | +<figure><img src="../.gitbook/assets/image (339).png" alt="" width="563"><figcaption></figcaption></figure> |
159 | 135 |
|
160 | 136 | 1. _**Boosting type**_: Specifies the boosting type used in the algorithm.
|
161 | 137 | 2. _**Max depth**_: Specifies the maximum depth of the tree.
|
|
169 | 145 |
|
170 | 146 | ### CatBoost Regressor
|
171 | 147 |
|
172 |
| - |
173 |
| - |
174 |
| -<figure><img src="../.gitbook/assets/image (12).png" alt="" width="563"><figcaption></figcaption></figure> |
| 148 | +<figure><img src="../.gitbook/assets/image (340).png" alt="" width="563"><figcaption></figcaption></figure> |
175 | 149 |
|
176 | 150 | 1. _**Learning rate**_: Specifies the learning rate.
|
177 | 151 | 2. _**Loss function**_: Specifies the loss function used.
|
|
0 commit comments