Skip to content

Commit a709ac5

Browse files
minjk-blgitbook-bot
authored andcommitted
GITBOOK-71: Regressor
1 parent ce779ba commit a709ac5

13 files changed

+16
-42
lines changed

docs/.gitbook/assets/image (329).png

236 KB
Loading

docs/.gitbook/assets/image (330).png

46.2 KB
Loading

docs/.gitbook/assets/image (331).png

57.5 KB
Loading

docs/.gitbook/assets/image (332).png

50.1 KB
Loading

docs/.gitbook/assets/image (333).png

53.2 KB
Loading

docs/.gitbook/assets/image (334).png

61.4 KB
Loading

docs/.gitbook/assets/image (335).png

70.7 KB
Loading

docs/.gitbook/assets/image (336).png

79 KB
Loading

docs/.gitbook/assets/image (337).png

77.5 KB
Loading

docs/.gitbook/assets/image (338).png

69.4 KB
Loading

docs/.gitbook/assets/image (339).png

74.7 KB
Loading

docs/.gitbook/assets/image (340).png

84.1 KB
Loading

docs/machine-learning/5.-regressor.md

Lines changed: 16 additions & 42 deletions
Original file line numberDiff line numberDiff line change
@@ -1,14 +1,10 @@
11
# 5. Regressor
22

3-
4-
5-
<figure><img src="../.gitbook/assets/image (2).png" alt="" width="209"><figcaption></figcaption></figure>
3+
<figure><img src="../.gitbook/assets/image (329).png" alt="" width="525"><figcaption></figcaption></figure>
64

75
1. Click on the _**Regressor**_ in the _**Machine Learning**_ category.
86

9-
10-
11-
<figure><img src="../.gitbook/assets/image (1) (2).png" alt="" width="563"><figcaption></figcaption></figure>
7+
<figure><img src="../.gitbook/assets/image (330).png" alt="" width="563"><figcaption></figcaption></figure>
128

139
2. _**Model Type**_: Choose the regression model.
1410

@@ -33,9 +29,7 @@
3329

3430
### Linear Regression
3531

36-
37-
38-
<figure><img src="../.gitbook/assets/image (2) (2).png" alt="" width="563"><figcaption></figcaption></figure>
32+
<figure><img src="../.gitbook/assets/image (331).png" alt="" width="563"><figcaption></figcaption></figure>
3933

4034
1. _**Fit Intercept**_: Choose whether to include the intercept.
4135

@@ -45,9 +39,7 @@
4539

4640
### Ridge / Lasso
4741

48-
49-
50-
<figure><img src="../.gitbook/assets/image (3).png" alt="" width="563"><figcaption></figcaption></figure>
42+
<figure><img src="../.gitbook/assets/image (332).png" alt="" width="563"><figcaption></figcaption></figure>
5143

5244
1. _**Alpha**_: Adjust the level of regularization.
5345

@@ -57,9 +49,7 @@
5749

5850
### ElasticNet
5951

60-
61-
62-
<figure><img src="../.gitbook/assets/image (4).png" alt="" width="563"><figcaption></figcaption></figure>
52+
<figure><img src="../.gitbook/assets/image (333).png" alt=""><figcaption></figcaption></figure>
6353

6454
1. _**Alpha**_: Adjust the level of regularization.
6555
2. _**L1 ratio**_: Adjusts the balance (ratio) between _**L1 (Lasso)**_ and _**L2 (Ridge)**_ regularization.
@@ -70,28 +60,22 @@
7060

7161
### SVR(SupportVectorMachine Regressor)
7262

73-
74-
75-
<figure><img src="../.gitbook/assets/image (5).png" alt="" width="563"><figcaption></figcaption></figure>
63+
<figure><img src="../.gitbook/assets/image (334).png" alt="" width="563"><figcaption></figcaption></figure>
7664

7765
1. _**C**_: Represents the degree of freedom for model regularization. Higher values of C make the model more complex, fitting the training data more closely.
7866
2. _**Kernel**_: Function mapping data to a higher-dimensional space, controlling model complexity.
79-
80-
* _**Degree(Poly)**_: Determines the degree of polynomial.
81-
* _**Gamma(Poly, rbf, sigmoid)**_: Adjusts the curvature of the decision boundary.
82-
* _**Coef0(Poly, sigmoid)**_: Additional parameter for the kernel, controlling the offset. Higher values fit the training data more closely.
83-
84-
3. _**Random state**_: Sets the seed value for the random number generator used in model training.
67+
3. _**Degree(Poly)**_: Determines the degree of polynomial.
68+
4. _**Gamma(Poly, rbf, sigmoid)**_: Adjusts the curvature of the decision boundary.
69+
5. _**Coef0(Poly, sigmoid)**_: Additional parameter for the kernel, controlling the offset. Higher values fit the training data more closely.
70+
6. _**Random state**_: Sets the seed value for the random number generator used in model training.
8571

8672

8773

8874
***
8975

9076
### DecisionTree Regressor
9177

92-
93-
94-
<figure><img src="../.gitbook/assets/image (6).png" alt="" width="563"><figcaption></figcaption></figure>
78+
<figure><img src="../.gitbook/assets/image (335).png" alt="" width="563"><figcaption></figcaption></figure>
9579

9680
1. _**Criterion**_: Specifies the measure used for node splitting.
9781
2. _**Max depth**_: Specifies the maximum depth of the tree.
@@ -104,9 +88,7 @@
10488

10589
### RandomForest Regressor
10690

107-
108-
109-
<figure><img src="../.gitbook/assets/image (7).png" alt="" width="563"><figcaption></figcaption></figure>
91+
<figure><img src="../.gitbook/assets/image (336).png" alt="" width="563"><figcaption></figcaption></figure>
11092

11193
1. _**N estimators**_: Specifies the number of trees in the ensemble.
11294
2. _**Criterion**_: Specifies the measure used for node splitting.
@@ -121,9 +103,7 @@
121103

122104
### GradientBoosting Regressor
123105

124-
125-
126-
<figure><img src="../.gitbook/assets/image (8).png" alt="" width="563"><figcaption></figcaption></figure>
106+
<figure><img src="../.gitbook/assets/image (337).png" alt="" width="563"><figcaption></figcaption></figure>
127107

128108
1. _**Loss**_: Specifies the loss function used.
129109
2. _**Learning rate**_: Specifies the learning rate.
@@ -137,9 +117,7 @@
137117

138118
### XGB Regressor
139119

140-
141-
142-
<figure><img src="../.gitbook/assets/image (10).png" alt="" width="563"><figcaption></figcaption></figure>
120+
<figure><img src="../.gitbook/assets/image (338).png" alt=""><figcaption></figcaption></figure>
143121

144122
1. _**N estimators**_: Specifies the number of trees in the ensemble.
145123
2. _**Max depth**_: Specifies the maximum depth of the tree.
@@ -153,9 +131,7 @@
153131

154132
### LGBM Regressor
155133

156-
157-
158-
<figure><img src="../.gitbook/assets/image (11).png" alt="" width="563"><figcaption></figcaption></figure>
134+
<figure><img src="../.gitbook/assets/image (339).png" alt="" width="563"><figcaption></figcaption></figure>
159135

160136
1. _**Boosting type**_: Specifies the boosting type used in the algorithm.
161137
2. _**Max depth**_: Specifies the maximum depth of the tree.
@@ -169,9 +145,7 @@
169145

170146
### CatBoost Regressor
171147

172-
173-
174-
<figure><img src="../.gitbook/assets/image (12).png" alt="" width="563"><figcaption></figcaption></figure>
148+
<figure><img src="../.gitbook/assets/image (340).png" alt="" width="563"><figcaption></figcaption></figure>
175149

176150
1. _**Learning rate**_: Specifies the learning rate.
177151
2. _**Loss function**_: Specifies the loss function used.

0 commit comments

Comments
 (0)