@@ -32,6 +32,7 @@ define([
32
32
"name" : "Series" ,
33
33
"library" : "pandas" ,
34
34
"description" : "1 dimension array with same data types" ,
35
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.Series.html" ,
35
36
"code" : "${o0} = pd.Series(${i0}${index}${name})" ,
36
37
"options" : [
37
38
{
@@ -64,6 +65,7 @@ define([
64
65
"name" : "DataFrame" ,
65
66
"library" : "pandas" ,
66
67
"description" : "2 dimension data table type pandas variable" ,
68
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html" ,
67
69
"code" : "${o0} = pd.DataFrame(${i0}${index}${columns})" ,
68
70
"options" : [
69
71
{
@@ -98,6 +100,7 @@ define([
98
100
"name" : "Index" ,
99
101
"library" : "pandas" ,
100
102
"description" : "Create index object" ,
103
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.Index.html" ,
101
104
"code" : "${o0} = pd.Index(${data}${dtype}${copy}${name}${tupleize_cols})" ,
102
105
"options" : [
103
106
{
@@ -162,6 +165,7 @@ define([
162
165
"name" : "Read CSV" ,
163
166
"library" : "pandas" ,
164
167
"description" : "" ,
168
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html" ,
165
169
"code" : "${o0} = pd.read_csv(${i0}${encoding}${header}${sep}${names}${usecols}${index_col}${na_values}${skiprows}${nrows}${chunksize}${etc})" ,
166
170
"options" : [
167
171
{
@@ -250,6 +254,7 @@ define([
250
254
"name" : "To CSV" ,
251
255
"library" : "pandas" ,
252
256
"description" : "dataframe to csv" ,
257
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_csv.html" ,
253
258
"code" : "${i0}.to_csv(${i1}${encoding}${header}${index}${sep}${na_rep}${columns}${etc})" ,
254
259
"options" : [
255
260
{
@@ -320,6 +325,7 @@ define([
320
325
"name" : "Merge" ,
321
326
"library" : "pandas" ,
322
327
"description" : "Merge 2 objects" ,
328
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.merge.html" ,
323
329
"code" : "${o0} = pd.merge(${i0}, ${i1}${left_on}${right_on}${how}${sort})" ,
324
330
"options" : [
325
331
{
@@ -390,6 +396,7 @@ define([
390
396
"name" : "Join" ,
391
397
"library" : "pandas" ,
392
398
"description" : "Merge multiple objects" ,
399
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.join.html" ,
393
400
"code" : "${o0} = ${i0}.join(${i1}${on}${how}${sort}${lsuffix}${rsuffix})" ,
394
401
"options" : [
395
402
{
@@ -469,6 +476,7 @@ define([
469
476
"name" : "Concat" ,
470
477
"library" : "pandas" ,
471
478
"description" : "Merge multiple objects" ,
479
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.concat.html" ,
472
480
"code" : "${o0} = pd.concat([${i0}]${index}${axis}${sort}${join})" ,
473
481
"options" : [
474
482
{
@@ -540,6 +548,7 @@ define([
540
548
"name" : "Sort By Index" ,
541
549
"library" : "pandas" ,
542
550
"description" : "Sort by index" ,
551
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sort_index.html" ,
543
552
"code" : "${o0} = ${i0}.sort_index(${axis}${ascending}${inplace}${kind})" ,
544
553
"options" : [
545
554
{
@@ -624,6 +633,7 @@ define([
624
633
"name" : "Group By" ,
625
634
"library" : "pandas" ,
626
635
"description" : "Group DataFrame/Series" ,
636
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html" ,
627
637
"code" : "${o0} = ${i0}.groupby(${level}${axis}${sort}${as_index})" ,
628
638
"options" : [
629
639
{
@@ -692,6 +702,7 @@ define([
692
702
"name" : "Period" ,
693
703
"library" : "pandas" ,
694
704
"description" : "Create Period object" ,
705
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.Period.html" ,
695
706
"code" : "${o0} = pd.Period(${i0}${freq}${year}${month}${day})" ,
696
707
"options" : [
697
708
{
@@ -759,6 +770,7 @@ define([
759
770
"name" : "Drop NA" ,
760
771
"library" : "pandas" ,
761
772
"description" : "" ,
773
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.dropna.html" ,
762
774
"code" : "${o0} = ${i0}.dropna(${axis}${how}${thresh})" ,
763
775
"options" : [
764
776
{
@@ -823,6 +835,7 @@ define([
823
835
"name" : "Fill NA" ,
824
836
"library" : "pandas" ,
825
837
"description" : "replace null using value" ,
838
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.fillna.html" ,
826
839
"code" : "${o0} = ${i0}.fillna(${value}${axis}${method}${inplace}${limit})" ,
827
840
"options" : [
828
841
{
@@ -902,6 +915,7 @@ define([
902
915
"name" : "Get Duplicates" ,
903
916
"library" : "pandas" ,
904
917
"description" : "Get duplicates" ,
918
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.duplicated.html" ,
905
919
"code" : "${o0} = ${i0}.duplicated(${keep})" ,
906
920
"options" : [
907
921
{
@@ -986,6 +1000,7 @@ define([
986
1000
"name" : "Scala Replace" ,
987
1001
"library" : "pandas" ,
988
1002
"description" : "Replace scala value" ,
1003
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.replace.html" ,
989
1004
"code" : "${o0} = ${i0}.replace(${to_replace}${value}${method})" ,
990
1005
"options" : [
991
1006
{
@@ -1038,6 +1053,7 @@ define([
1038
1053
"name" : "List-like Replace" ,
1039
1054
"library" : "pandas" ,
1040
1055
"description" : "Replace values using list" ,
1056
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.replace.html" ,
1041
1057
"code" : "${o0} = ${i0}.replace(${to_replace}${value}${method})" ,
1042
1058
"options" : [
1043
1059
{
@@ -1090,6 +1106,7 @@ define([
1090
1106
"name" : "Dict-like Replace" ,
1091
1107
"library" : "pandas" ,
1092
1108
"description" : "Replace values using dictionary" ,
1109
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.replace.html" ,
1093
1110
"code" : "${o0} = ${i0}.replace(${to_replace}${value}${method})" ,
1094
1111
"options" : [
1095
1112
{
@@ -1142,6 +1159,7 @@ define([
1142
1159
"name" : "Regular Expression Replace" ,
1143
1160
"library" : "pandas" ,
1144
1161
"description" : "" ,
1162
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.replace.html" ,
1145
1163
"code" : "${o0} = ${i0}.replace(${to_replace}${value}${method}${regex})" ,
1146
1164
"options" : [
1147
1165
{
@@ -1203,6 +1221,7 @@ define([
1203
1221
"name" : "Sum" ,
1204
1222
"library" : "pandas" ,
1205
1223
"description" : "" ,
1224
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sum.html" ,
1206
1225
"code" : "${o0} = ${i0}.sum(${axis}${skipna}${level})" ,
1207
1226
"options" : [
1208
1227
{
@@ -1262,6 +1281,7 @@ define([
1262
1281
"name" : "Mean" ,
1263
1282
"library" : "pandas" ,
1264
1283
"description" : "" ,
1284
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.mean.html" ,
1265
1285
"code" : "${o0} = ${i0}.mean(${axis}${skipna}${level})" ,
1266
1286
"options" : [
1267
1287
{
@@ -1321,6 +1341,7 @@ define([
1321
1341
"name" : "Count" ,
1322
1342
"library" : "pandas" ,
1323
1343
"description" : "Count except NA values" ,
1344
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.count.html" ,
1324
1345
"code" : "${o0} = ${i0}.count(${axis}${skipna}${level})" ,
1325
1346
"options" : [
1326
1347
{
@@ -1380,6 +1401,7 @@ define([
1380
1401
"name" : "Max" ,
1381
1402
"library" : "pandas" ,
1382
1403
"description" : "" ,
1404
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.max.html" ,
1383
1405
"code" : "${o0} = ${i0}.max(${axis}${skipna}${level})" ,
1384
1406
"options" : [
1385
1407
{
@@ -1439,6 +1461,7 @@ define([
1439
1461
"name" : "Min" ,
1440
1462
"library" : "pandas" ,
1441
1463
"description" : "" ,
1464
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.min.html" ,
1442
1465
"code" : "${o0} = ${i0}.min(${axis}${skipna}${level})" ,
1443
1466
"options" : [
1444
1467
{
@@ -1498,6 +1521,7 @@ define([
1498
1521
"name" : "Median" ,
1499
1522
"library" : "pandas" ,
1500
1523
"description" : "Median(50%)" ,
1524
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.median.html" ,
1501
1525
"code" : "${o0} = ${i0}.median(${axis}${skipna}${level}${numeric_only})" ,
1502
1526
"options" : [
1503
1527
{
@@ -1574,6 +1598,7 @@ define([
1574
1598
"name" : "Std" ,
1575
1599
"library" : "pandas" ,
1576
1600
"description" : "" ,
1601
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.std.html" ,
1577
1602
"code" : "${o0} = ${i0}.std(${axis}${skipna}${level}${numeric_only})" ,
1578
1603
"options" : [
1579
1604
{
@@ -1650,6 +1675,7 @@ define([
1650
1675
"name" : "Quantile" ,
1651
1676
"library" : "pandas" ,
1652
1677
"description" : "Calculate quantile between 0 and 1" ,
1678
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.quantile.html" ,
1653
1679
"code" : "${o0} = ${i0}.quantile(${q}${axis}${numeric_only}${interpolation})" ,
1654
1680
"options" : [
1655
1681
{
@@ -1735,6 +1761,7 @@ define([
1735
1761
"name" : "Drop Row/Column" ,
1736
1762
"library" : "pandas" ,
1737
1763
"description" : "Drop row and column" ,
1764
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.drop.html" ,
1738
1765
"code" : "${o0} = ${i0}.drop(${i1}${axis})" ,
1739
1766
"options" : [
1740
1767
{
@@ -1791,6 +1818,7 @@ define([
1791
1818
"name" : "date_range" ,
1792
1819
"library" : "pandas" ,
1793
1820
"description" : "Create DatetimeIndex type timestamp" ,
1821
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.date_range.html" ,
1794
1822
"code" : "${o0} = pd.date_range(${start}${end}${periods}${freq})" ,
1795
1823
"options" : [
1796
1824
{
@@ -1862,6 +1890,7 @@ define([
1862
1890
"name" : "Sort By Values" ,
1863
1891
"library" : "pandas" ,
1864
1892
"description" : "" ,
1893
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sort_values.html" ,
1865
1894
"code" : "${o0} = ${i0}.sort_values(${by}${axis}${ascending}${inplace}${kind})" ,
1866
1895
"options" : [
1867
1896
{
@@ -1946,6 +1975,7 @@ define([
1946
1975
"name" : "Is Null" ,
1947
1976
"library" : "pandas" ,
1948
1977
"description" : "Find null" ,
1978
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.isnull.html" ,
1949
1979
"code" : "${o0} = pd.isnull(${i0})" ,
1950
1980
"options" : [
1951
1981
{
@@ -1974,6 +2004,7 @@ define([
1974
2004
"name" : "Not Null" ,
1975
2005
"library" : "pandas" ,
1976
2006
"description" : "Find not null" ,
2007
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.notnull.html" ,
1977
2008
"code" : "${o0} = pd.notnull(${i0})" ,
1978
2009
"options" : [
1979
2010
{
@@ -2002,6 +2033,7 @@ define([
2002
2033
"name" : "Transpose" ,
2003
2034
"library" : "pandas" ,
2004
2035
"description" : "Transpose row and column" ,
2036
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.T.html" ,
2005
2037
"code" : "${o0} = ${i0}.T" ,
2006
2038
"options" : [
2007
2039
{
@@ -2031,6 +2063,7 @@ define([
2031
2063
"name" : "Get columns" ,
2032
2064
"library" : "pandas" ,
2033
2065
"description" : "" ,
2066
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.columns.html" ,
2034
2067
"code" : "${o0} = ${i0}.columns" ,
2035
2068
"options" : [
2036
2069
{
@@ -2375,6 +2408,7 @@ define([
2375
2408
"name" : "Unique" ,
2376
2409
"library" : "pandas" ,
2377
2410
"description" : "" ,
2411
+ "docs" : "https://pandas.pydata.org/docs/reference/api/pandas.Series.unique.html" ,
2378
2412
"code" : "${o0} = ${i0}.unique()" ,
2379
2413
"options" : [
2380
2414
{
0 commit comments