Skip to content

Commit ebf2278

Browse files
minjk-blgitbook-bot
authored andcommitted
GITBOOK-30: Dimension
1 parent 7f28648 commit ebf2278

16 files changed

+29
-11
lines changed

docs/.gitbook/assets/image (1).png

1.84 KB
Loading

docs/.gitbook/assets/image (163).png

79.3 KB
Loading

docs/.gitbook/assets/image (164).png

61.7 KB
Loading

docs/.gitbook/assets/image (165).png

57.6 KB
Loading

docs/.gitbook/assets/image (166).png

59.6 KB
Loading

docs/.gitbook/assets/image (167).png

56.1 KB
Loading

docs/.gitbook/assets/image (168).png

80.3 KB
Loading

docs/.gitbook/assets/image (169).png

73 KB
Loading

docs/.gitbook/assets/image (2).png

389 Bytes
Loading

docs/.gitbook/assets/image (3).png

-7.29 KB
Loading

docs/.gitbook/assets/image (4).png

-450 Bytes
Loading

docs/.gitbook/assets/image (5).png

-21.6 KB
Loading

docs/.gitbook/assets/image.png

2.21 KB
Loading

docs/machine-learning/5.-regressor.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -2,13 +2,13 @@
22

33

44

5-
<figure><img src="../.gitbook/assets/image (5).png" alt="" width="209"><figcaption></figcaption></figure>
5+
<figure><img src="../.gitbook/assets/image.png" alt="" width="209"><figcaption></figcaption></figure>
66

77
1. Click on the _**Regressor**_ in the _**Machine Learning**_ category.
88

99

1010

11-
<figure><img src="../.gitbook/assets/image (1) (2).png" alt="" width="563"><figcaption></figcaption></figure>
11+
<figure><img src="../.gitbook/assets/image (1).png" alt="" width="563"><figcaption></figcaption></figure>
1212

1313
2. _**Model Type**_: Choose the regression model.
1414

@@ -35,7 +35,7 @@
3535

3636

3737

38-
<figure><img src="../.gitbook/assets/image (2) (2).png" alt="" width="563"><figcaption></figcaption></figure>
38+
<figure><img src="../.gitbook/assets/image (2).png" alt="" width="563"><figcaption></figcaption></figure>
3939

4040
1. _**Fit Intercept**_: Choose whether to include the intercept.
4141

@@ -47,7 +47,7 @@
4747

4848

4949

50-
<figure><img src="../.gitbook/assets/image (3) (2).png" alt="" width="563"><figcaption></figcaption></figure>
50+
<figure><img src="../.gitbook/assets/image (3).png" alt="" width="563"><figcaption></figcaption></figure>
5151

5252
1. _**Alpha**_: Adjust the level of regularization.
5353

@@ -59,7 +59,7 @@
5959

6060

6161

62-
<figure><img src="../.gitbook/assets/image (4) (2).png" alt="" width="563"><figcaption></figcaption></figure>
62+
<figure><img src="../.gitbook/assets/image (4).png" alt="" width="563"><figcaption></figcaption></figure>
6363

6464
1. _**Alpha**_: Adjust the level of regularization.
6565
2. _**L1 ratio**_: Adjusts the balance (ratio) between _**L1 (Lasso)**_ and _**L2 (Ridge)**_ regularization.
@@ -72,7 +72,7 @@
7272

7373

7474

75-
<figure><img src="../.gitbook/assets/image (5) (2).png" alt="" width="563"><figcaption></figcaption></figure>
75+
<figure><img src="../.gitbook/assets/image (5).png" alt="" width="563"><figcaption></figcaption></figure>
7676

7777
1. _**C**_: Represents the degree of freedom for model regularization. Higher values of C make the model more complex, fitting the training data more closely.
7878
2. _**Kernel**_: Function mapping data to a higher-dimensional space, controlling model complexity.

docs/machine-learning/7.-clustering.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -2,13 +2,13 @@
22

33

44

5-
<figure><img src="../.gitbook/assets/image.png" alt="" width="210"><figcaption></figcaption></figure>
5+
<figure><img src="../.gitbook/assets/image (163).png" alt="" width="210"><figcaption></figcaption></figure>
66

77
1. Click on _**Clustering**_ under the _**Machine Learning**_ category.
88

99

1010

11-
<figure><img src="../.gitbook/assets/image (1).png" alt="" width="563"><figcaption></figcaption></figure>
11+
<figure><img src="../.gitbook/assets/image (164).png" alt="" width="563"><figcaption></figcaption></figure>
1212

1313
2. _**Model type**_: Select the type of Model you want to use.
1414
* [KMeans / AgglomerativeClustering](7.-clustering.md#kmeans-agglomerativeclustering)
@@ -26,7 +26,7 @@
2626

2727

2828

29-
<figure><img src="../.gitbook/assets/image (2).png" alt="" width="563"><figcaption></figcaption></figure>
29+
<figure><img src="../.gitbook/assets/image (165).png" alt="" width="563"><figcaption></figcaption></figure>
3030

3131
1. _**N clusters**_: Specify the number of clusters to be generated.
3232
2. _**Random state**_: Set the seed value for the random number generator.
@@ -39,7 +39,7 @@
3939

4040

4141

42-
<figure><img src="../.gitbook/assets/image (3).png" alt="" width="563"><figcaption></figcaption></figure>
42+
<figure><img src="../.gitbook/assets/image (166).png" alt="" width="563"><figcaption></figcaption></figure>
4343

4444
1. _**N components**_: Specify the number of Gaussian distributions to be used by the model to describe the data, determining how many clusters the data will be divided into.
4545
2. _**Random state**_: Set the seed value for the random number generator.
@@ -52,7 +52,7 @@
5252

5353

5454

55-
<figure><img src="../.gitbook/assets/image (4).png" alt="" width="563"><figcaption></figcaption></figure>
55+
<figure><img src="../.gitbook/assets/image (167).png" alt="" width="563"><figcaption></figcaption></figure>
5656

5757
1. _**Eps (Epsilon)**_: Specify the maximum distance (radius) for forming clusters.
5858
2. _**Min samples**_: Specify the minimum number of neighboring data points required for a point to be recognized as a cluster.

docs/machine-learning/8.-dimension.md

Lines changed: 18 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,2 +1,20 @@
11
# 8. Dimension
22

3+
4+
5+
<figure><img src="../.gitbook/assets/image (168).png" alt="" width="214"><figcaption></figcaption></figure>
6+
7+
1. Click on _**Dimension**_ under the _**Machine Learning**_ category.
8+
9+
10+
11+
<figure><img src="../.gitbook/assets/image (169).png" alt="" width="563"><figcaption></figcaption></figure>
12+
13+
2. _**Model type**_: Select the type of model.
14+
3. _**N components**_: Specify the desired number of dimensions to reduce the data to.
15+
4. _**Learning rate (TSNE)**_: Learning rate determines how much the TSNE algorithm reflects the distances between data points. Too large values may cause data to be excessively dense, while too small values may lead to convergence issues. Typically, values between 0.1 and 0.3 are used.
16+
5. _**Random state**_ - Set the seed value for the random number generator.
17+
6. _**Allocate to**_: Specify the variable name to assign to the model.
18+
7. _**Code view**_: Preview the generated code.
19+
8. _**Run**_: Execute the code.
20+

0 commit comments

Comments
 (0)