|
| 1 | +// Source : https://leetcode.com/problems/maximum-score-from-performing-multiplication-operations/ |
| 2 | +// Author : Hao Chen |
| 3 | +// Date : 2021-04-01 |
| 4 | + |
| 5 | +/***************************************************************************************************** |
| 6 | + * |
| 7 | + * You are given two integer arrays nums and multipliers of size n and m respectively, where n >= m. |
| 8 | + * The arrays are 1-indexed. |
| 9 | + * |
| 10 | + * You begin with a score of 0. You want to perform exactly m operations. On the i^th operation |
| 11 | + * (1-indexed), you will: |
| 12 | + * |
| 13 | + * Choose one integer x from either the start or the end of the array nums. |
| 14 | + * Add multipliers[i] * x to your score. |
| 15 | + * Remove x from the array nums. |
| 16 | + * |
| 17 | + * Return the maximum score after performing m operations. |
| 18 | + * |
| 19 | + * Example 1: |
| 20 | + * |
| 21 | + * Input: nums = [1,2,3], multipliers = [3,2,1] |
| 22 | + * Output: 14 |
| 23 | + * Explanation: An optimal solution is as follows: |
| 24 | + * - Choose from the end, [1,2,3], adding 3 * 3 = 9 to the score. |
| 25 | + * - Choose from the end, [1,2], adding 2 * 2 = 4 to the score. |
| 26 | + * - Choose from the end, [1], adding 1 * 1 = 1 to the score. |
| 27 | + * The total score is 9 + 4 + 1 = 14. |
| 28 | + * |
| 29 | + * Example 2: |
| 30 | + * |
| 31 | + * Input: nums = [-5,-3,-3,-2,7,1], multipliers = [-10,-5,3,4,6] |
| 32 | + * Output: 102 |
| 33 | + * Explanation: An optimal solution is as follows: |
| 34 | + * - Choose from the start, [-5,-3,-3,-2,7,1], adding -5 * -10 = 50 to the score. |
| 35 | + * - Choose from the start, [-3,-3,-2,7,1], adding -3 * -5 = 15 to the score. |
| 36 | + * - Choose from the start, [-3,-2,7,1], adding -3 * 3 = -9 to the score. |
| 37 | + * - Choose from the end, [-2,7,1], adding 1 * 4 = 4 to the score. |
| 38 | + * - Choose from the end, [-2,7], adding 7 * 6 = 42 to the score. |
| 39 | + * The total score is 50 + 15 - 9 + 4 + 42 = 102. |
| 40 | + * |
| 41 | + * Constraints: |
| 42 | + * |
| 43 | + * n == nums.length |
| 44 | + * m == multipliers.length |
| 45 | + * 1 <= m <= 10^3 |
| 46 | + * m <= n <= 10^5 |
| 47 | + * -1000 <= nums[i], multipliers[i] <= 1000 |
| 48 | + ******************************************************************************************************/ |
| 49 | + |
| 50 | +const int MAX_SIZE = 1000; |
| 51 | +class Solution { |
| 52 | +private: |
| 53 | + int cache[MAX_SIZE][MAX_SIZE]; // num of left picked, num of right picked. |
| 54 | + int m, n; |
| 55 | +public: |
| 56 | + int maximumScore(vector<int>& nums, vector<int>& multipliers) { |
| 57 | + memset(cache, -1, sizeof(cache)); |
| 58 | + n = nums.size(); |
| 59 | + m = multipliers.size(); |
| 60 | + return maximumScoreDFS(nums, 0, n-1, multipliers, 0 ); |
| 61 | + } |
| 62 | + |
| 63 | + int maximumScoreDFS(vector<int>& nums, int left, int right, |
| 64 | + vector<int>& multipliers, int midx) { |
| 65 | + |
| 66 | + if(midx >= m ) return 0; |
| 67 | + |
| 68 | + int nLeft = left; // num of left nums[] picked. |
| 69 | + int nRight = (n-1)-right; // num of right nums[] picked. |
| 70 | + if (cache[nLeft][nRight]!=-1) return cache[nLeft][nRight]; |
| 71 | + |
| 72 | + int pickLeft = maximumScoreDFS(nums, left+1, right, multipliers, midx+1) + |
| 73 | + multipliers[midx] * nums[left]; |
| 74 | + |
| 75 | + int pickRight = maximumScoreDFS(nums, left, right-1, multipliers, midx+1) + |
| 76 | + multipliers[midx] * nums[right]; |
| 77 | + |
| 78 | + cache[nLeft][nRight] = max(pickLeft, pickRight); |
| 79 | + return cache[nLeft][nRight]; |
| 80 | + } |
| 81 | +}; |
0 commit comments