-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path04.py~
31 lines (22 loc) · 915 Bytes
/
04.py~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
diabetes = datasets.load_diabetes()
# Para ver a descrição do dataset
print(diabetes.DESCR)
# Visualizar os dados
X = diabetes.data
y = diabetes.target
# Como temos múltiplas características, vamos usar apenas a primeira para simplificar o exemplo
X = X[:, np.newaxis, 2]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
# Avaliar o desempenho do modelo
print('Coefficients: \n', model.coef_)
print('Mean squared error: %.2f' % mean_squared_error(y_test, y_pred))
print('Coefficient of determination: %.2f' % r2_score(y_test, y_pred))