|
| 1 | +/** |
| 2 | + * Find the contiguous subarray within an array (containing at least one number) which has the largest sum. |
| 3 | + * |
| 4 | + * For example, given the array [-2,1,-3,4,-1,2,1,-5,4], |
| 5 | + * the contiguous subarray [4,-1,2,1] has the largest sum = 6. |
| 6 | + */ |
| 7 | + |
| 8 | +/** |
| 9 | + * |
| 10 | + * https://discuss.leetcode.com/topic/6413/dp-solution-some-thoughts |
| 11 | + * |
| 12 | + * @param {number[]} nums |
| 13 | + * @return {number} |
| 14 | + */ |
| 15 | +var maxSubArray = function (nums) { |
| 16 | + |
| 17 | + var dp = []; |
| 18 | + var max = dp[0] = nums[0]; |
| 19 | + |
| 20 | + for (var i = 1; i < nums.length; i++) { |
| 21 | + dp[i] = nums[i] + (dp[i - 1] > 0 ? dp[i - 1] : 0); |
| 22 | + max = Math.max(dp[i], max); |
| 23 | + } |
| 24 | + |
| 25 | + return max; |
| 26 | + |
| 27 | +}; |
| 28 | + |
| 29 | +/** |
| 30 | + * https://discuss.leetcode.com/topic/5000/accepted-o-n-solution-in-java/11 |
| 31 | + * @param nums |
| 32 | + * @returns {*} |
| 33 | + */ |
| 34 | +var maxSubArray = function (nums) { |
| 35 | + |
| 36 | + var max = nums[0]; |
| 37 | + var sum = nums[0]; |
| 38 | + |
| 39 | + for (var i = 1; i < nums.length; i++) { |
| 40 | + sum = sum > 0 ? (sum + nums[i]) : nums[i]; |
| 41 | + max = Math.max(sum, max); |
| 42 | + } |
| 43 | + return max; |
| 44 | + |
| 45 | +}; |
| 46 | + |
| 47 | +console.log(maxSubArray([1, 1, 1]) == 3); |
| 48 | +console.log(maxSubArray([-1, -1, -1]) == -1); |
| 49 | +console.log(maxSubArray([-2, 1, -3, 4, -1, 2, 1, -5, 4]) == 6); |
| 50 | +console.log(maxSubArray([-2, -1]) == -1); |
| 51 | +console.log(maxSubArray([-1]) == -1); |
| 52 | +console.log(maxSubArray([-1, 0]) == 0); |
| 53 | + |
0 commit comments