|
32 | 32 | "cell_type": "markdown",
|
33 | 33 | "metadata": {},
|
34 | 34 | "source": [
|
35 |
| - "## 1.创建对象" |
| 35 | + "\n", |
| 36 | + "## 1.创建对象\n", |
| 37 | + "\n", |
| 38 | + "### 详情参见[Data Structure Intro section](http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dsintro)" |
36 | 39 | ]
|
37 | 40 | },
|
38 | 41 | {
|
39 | 42 | "cell_type": "markdown",
|
40 | 43 | "metadata": {},
|
41 | 44 | "source": [
|
42 |
| - "### 我们可以通过传入一个列表对象来创建Series,pandas会默认为其创建整数索引。" |
| 45 | + "### 我们可以通过传入一个列表对象来创建Series,pandas会默认为其创建整数索引:" |
43 | 46 | ]
|
44 | 47 | },
|
45 | 48 | {
|
|
81 | 84 | "cell_type": "markdown",
|
82 | 85 | "metadata": {},
|
83 | 86 | "source": [
|
84 |
| - "### 同样,通过传入一个numpy矩阵、时间索引和列标签来创建DataFrame" |
| 87 | + "### 同样,通过传入一个numpy矩阵、时间索引和列标签来创建DataFrame:" |
85 | 88 | ]
|
86 | 89 | },
|
87 | 90 | {
|
|
226 | 229 | "cell_type": "markdown",
|
227 | 230 | "metadata": {},
|
228 | 231 | "source": [
|
229 |
| - "### 也可以通过传入一个能够被转换成形似Series结构的字典对象来创建DataFrame" |
| 232 | + "### 也可以通过传入一个能够被转换成形似Series结构的字典对象来创建DataFrame。" |
230 | 233 | ]
|
231 | 234 | },
|
232 | 235 | {
|
|
388 | 391 | "df2.align df2.clip_upper\n",
|
389 | 392 | "df2.all df2.columns\n",
|
390 | 393 | "df2.any df2.combine\n",
|
391 |
| - "df2.append df2.combine_first\n", |
| 394 | + "df2.append df2.combine_fibeta\n", |
392 | 395 | "df2.apply df2.compound\n",
|
393 | 396 | "df2.applymap df2.consolidate\n",
|
394 | 397 | "df2.D"
|
|
405 | 408 | "cell_type": "markdown",
|
406 | 409 | "metadata": {},
|
407 | 410 | "source": [
|
408 |
| - "## 2.查看数据" |
| 411 | + "## 2.查看数据\n", |
| 412 | + "### 详情参见[Basics section](http://pandas.pydata.org/pandas-docs/stable/basics.html#basics)" |
409 | 413 | ]
|
410 | 414 | },
|
411 | 415 | {
|
412 | 416 | "cell_type": "markdown",
|
413 | 417 | "metadata": {},
|
414 | 418 | "source": [
|
415 |
| - "### 分别查看数据的最前、最后几行" |
| 419 | + "### 分别查看数据的最前、最后几行:" |
416 | 420 | ]
|
417 | 421 | },
|
418 | 422 | {
|
|
583 | 587 | "cell_type": "markdown",
|
584 | 588 | "metadata": {},
|
585 | 589 | "source": [
|
586 |
| - "### 显示数据的索引(index),列名(column)和取值(value)" |
| 590 | + "### 显示数据的索引(index),列名(column)和取值(value):" |
587 | 591 | ]
|
588 | 592 | },
|
589 | 593 | {
|
|
657 | 661 | "cell_type": "markdown",
|
658 | 662 | "metadata": {},
|
659 | 663 | "source": [
|
660 |
| - "### describe用于显示数据的快速统计汇总" |
| 664 | + "### describe用于显示数据的快速统计汇总:" |
661 | 665 | ]
|
662 | 666 | },
|
663 | 667 | {
|
|
778 | 782 | "cell_type": "markdown",
|
779 | 783 | "metadata": {},
|
780 | 784 | "source": [
|
781 |
| - "### 对数据进行转置" |
| 785 | + "### 对数据进行转置:" |
782 | 786 | ]
|
783 | 787 | },
|
784 | 788 | {
|
|
877 | 881 | "cell_type": "markdown",
|
878 | 882 | "metadata": {},
|
879 | 883 | "source": [
|
880 |
| - "### 将数据按照轴来排序(axis表示轴的维度,axis=0表示行,axis=1表示列)" |
| 884 | + "### 将数据按照轴来排序(axis表示轴的维度,axis=0表示行,axis=1表示列):" |
881 | 885 | ]
|
882 | 886 | },
|
883 | 887 | {
|
|
982 | 986 | "cell_type": "markdown",
|
983 | 987 | "metadata": {},
|
984 | 988 | "source": [
|
985 |
| - "### 将数据按照值排序" |
| 989 | + "### 将数据按照值排序:" |
986 | 990 | ]
|
987 | 991 | },
|
988 | 992 | {
|
|
1094 | 1098 | "cell_type": "markdown",
|
1095 | 1099 | "metadata": {},
|
1096 | 1100 | "source": [
|
1097 |
| - "### 注意:虽然Python标准库和Numpy的选择和设置表达式也能直接使用,但是作为产品代码,我们推荐使用经过优化的pandas数据访问方式: .at, .iat, .loc, .iloc 和 .ix" |
| 1101 | + "\n", |
| 1102 | + "> 注意:虽然Python标准库和Numpy的选择和设置表达式也能直接使用,但是作为产品代码,我们推荐使用经过优化的pandas数据访问方式: .at, .iat, .loc, .iloc 和 .ix" |
1098 | 1103 | ]
|
1099 | 1104 | },
|
1100 | 1105 | {
|
1101 | 1106 | "cell_type": "markdown",
|
1102 | 1107 | "metadata": {},
|
1103 | 1108 | "source": [
|
| 1109 | + "### 详情参见[Indexing and Selecting Data](http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing)和[MultiIndex / Advanced Indexing](http://pandas.pydata.org/pandas-docs/stable/advanced.html#advanced)\n", |
1104 | 1110 | "### 3.1 获取"
|
1105 | 1111 | ]
|
1106 | 1112 | },
|
1107 | 1113 | {
|
1108 | 1114 | "cell_type": "markdown",
|
1109 | 1115 | "metadata": {},
|
1110 | 1116 | "source": [
|
1111 |
| - "### 选择单列,将返回一个Series序列,等价于df.A:" |
| 1117 | + "### 选择单列,将返回一个Series序列,等价于df.A:" |
1112 | 1118 | ]
|
1113 | 1119 | },
|
1114 | 1120 | {
|
|
1141 | 1147 | "cell_type": "markdown",
|
1142 | 1148 | "metadata": {},
|
1143 | 1149 | "source": [
|
1144 |
| - "### 通过[ ]来选择,对行进行切片" |
| 1150 | + "### 通过[ ]来选择,对行进行切片:" |
1145 | 1151 | ]
|
1146 | 1152 | },
|
1147 | 1153 | {
|
|
1303 | 1309 | "cell_type": "markdown",
|
1304 | 1310 | "metadata": {},
|
1305 | 1311 | "source": [
|
1306 |
| - "### 使用标签获取数据的横截面" |
| 1312 | + "### 使用标签获取数据的横截面:" |
1307 | 1313 | ]
|
1308 | 1314 | },
|
1309 | 1315 | {
|
|
1334 | 1340 | "cell_type": "markdown",
|
1335 | 1341 | "metadata": {},
|
1336 | 1342 | "source": [
|
1337 |
| - "### 使用标签来选取多个轴的数据" |
| 1343 | + "### 使用标签来选取多个轴的数据:" |
1338 | 1344 | ]
|
1339 | 1345 | },
|
1340 | 1346 | {
|
|
1425 | 1431 | "cell_type": "markdown",
|
1426 | 1432 | "metadata": {},
|
1427 | 1433 | "source": [
|
1428 |
| - "### 使用标签切片选取数据" |
| 1434 | + "### 使用标签切片选取数据:" |
1429 | 1435 | ]
|
1430 | 1436 | },
|
1431 | 1437 | {
|
|
1498 | 1504 | "cell_type": "markdown",
|
1499 | 1505 | "metadata": {},
|
1500 | 1506 | "source": [
|
1501 |
| - "### 降低返回数据对象的维度" |
| 1507 | + "### 降低返回数据对象的维度:" |
1502 | 1508 | ]
|
1503 | 1509 | },
|
1504 | 1510 | {
|
|
1527 | 1533 | "cell_type": "markdown",
|
1528 | 1534 | "metadata": {},
|
1529 | 1535 | "source": [
|
1530 |
| - "\n", |
1531 |
| - "### 获取一个具体的标量:" |
| 1536 | + "### 获取一个具体定位的标量:" |
1532 | 1537 | ]
|
1533 | 1538 | },
|
1534 | 1539 | {
|
|
1589 | 1594 | "cell_type": "markdown",
|
1590 | 1595 | "metadata": {},
|
1591 | 1596 | "source": [
|
1592 |
| - "### 通过整数下标选择(行)" |
| 1597 | + "### 通过整数下标选择(行):" |
1593 | 1598 | ]
|
1594 | 1599 | },
|
1595 | 1600 | {
|
|
1620 | 1625 | "cell_type": "markdown",
|
1621 | 1626 | "metadata": {},
|
1622 | 1627 | "source": [
|
1623 |
| - "### 通过整数下标进行切片,与numpy/python切片操作相似" |
| 1628 | + "### 通过整数下标进行切片,与numpy/python切片操作相似:" |
1624 | 1629 | ]
|
1625 | 1630 | },
|
1626 | 1631 | {
|
|
1687 | 1692 | "cell_type": "markdown",
|
1688 | 1693 | "metadata": {},
|
1689 | 1694 | "source": [
|
1690 |
| - "### 通过列表(list)的方式切片,同样与numpy / python操作类似" |
| 1695 | + "### 通过列表(list)的方式切片,同样与numpy / python操作类似:" |
1691 | 1696 | ]
|
1692 | 1697 | },
|
1693 | 1698 | {
|
|
1760 | 1765 | "cell_type": "markdown",
|
1761 | 1766 | "metadata": {},
|
1762 | 1767 | "source": [
|
1763 |
| - "### 对行进行切片" |
| 1768 | + "### 对行进行切片:" |
1764 | 1769 | ]
|
1765 | 1770 | },
|
1766 | 1771 | {
|
|
1833 | 1838 | "cell_type": "markdown",
|
1834 | 1839 | "metadata": {},
|
1835 | 1840 | "source": [
|
1836 |
| - "### 对列进行切片" |
| 1841 | + "### 对列进行切片:" |
1837 | 1842 | ]
|
1838 | 1843 | },
|
1839 | 1844 | {
|
|
1924 | 1929 | "cell_type": "markdown",
|
1925 | 1930 | "metadata": {},
|
1926 | 1931 | "source": [
|
1927 |
| - "### 获取特定位置的值" |
| 1932 | + "### 获取特定位置的值:" |
1928 | 1933 | ]
|
1929 | 1934 | },
|
1930 | 1935 | {
|
|
1951 | 1956 | "cell_type": "markdown",
|
1952 | 1957 | "metadata": {},
|
1953 | 1958 | "source": [
|
1954 |
| - "### 对标量的快速访问(等同于上面的方法)" |
| 1959 | + "### 快速访问一个标量(等同于上面的方法):" |
1955 | 1960 | ]
|
1956 | 1961 | },
|
1957 | 1962 | {
|
|
1985 | 1990 | "cell_type": "markdown",
|
1986 | 1991 | "metadata": {},
|
1987 | 1992 | "source": [
|
1988 |
| - "### 根据单列的值的条件来选择数据" |
| 1993 | + "### 根据单列的值的条件来选择数据:" |
1989 | 1994 | ]
|
1990 | 1995 | },
|
1991 | 1996 | {
|
|
2066 | 2071 | "cell_type": "markdown",
|
2067 | 2072 | "metadata": {},
|
2068 | 2073 | "source": [
|
2069 |
| - "### 根据布尔条件来选取DataFrame的数据" |
| 2074 | + "### 根据布尔条件来选取DataFrame的数据:" |
2070 | 2075 | ]
|
2071 | 2076 | },
|
2072 | 2077 | {
|
|
2377 | 2382 | "cell_type": "markdown",
|
2378 | 2383 | "metadata": {},
|
2379 | 2384 | "source": [
|
2380 |
| - "### 设置新列时,会自动根据索引对齐数据" |
| 2385 | + "### 设置新列时,会自动根据索引对齐数据:" |
2381 | 2386 | ]
|
2382 | 2387 | },
|
2383 | 2388 | {
|
|
2428 | 2433 | "cell_type": "markdown",
|
2429 | 2434 | "metadata": {},
|
2430 | 2435 | "source": [
|
2431 |
| - "### 根据列标签来设置值" |
| 2436 | + "### 根据列标签来设置新的值:" |
2432 | 2437 | ]
|
2433 | 2438 | },
|
2434 | 2439 | {
|
|
2444 | 2449 | "cell_type": "markdown",
|
2445 | 2450 | "metadata": {},
|
2446 | 2451 | "source": [
|
2447 |
| - "### 根据特定位置来设置值" |
| 2452 | + "### 根据特定位置来设置新的值:" |
2448 | 2453 | ]
|
2449 | 2454 | },
|
2450 | 2455 | {
|
|
2460 | 2465 | "cell_type": "markdown",
|
2461 | 2466 | "metadata": {},
|
2462 | 2467 | "source": [
|
2463 |
| - "### 根据numpy数组来设置" |
| 2468 | + "### 根据numpy数组来设置一组新值:" |
2464 | 2469 | ]
|
2465 | 2470 | },
|
2466 | 2471 | {
|
|
2588 | 2593 | "cell_type": "markdown",
|
2589 | 2594 | "metadata": {},
|
2590 | 2595 | "source": [
|
2591 |
| - "### 使用\"where条件\"来设置" |
| 2596 | + "### 使用布尔条件来设置:" |
2592 | 2597 | ]
|
2593 | 2598 | },
|
2594 | 2599 | {
|
|
0 commit comments