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1 Preface

Our aim was to write lecture notes for a one-academic-term course. It presents an introduc-
tion to portfolio management for students in mathematics and economics as well. For this,
elementary course on calculus and probability theory are prerequisite. Since the economic

notions are explained in detail, this manuscript is self-contained from economic point of view.

This material was developed in the University of Nijmegen (the Netherlands) and
Lajos Kossuth University of Debrecen (Hungary) in the framework of a three-year TEMPUS
project [JEP 09269-95].

This material was produced with the aid of KTEX. We mention that an HTML version
is also available which can be viewed by a Netscape Browser, which makes the material more

conveniently readable.

Our thank also goes to Tjacco van der Meer for playing an important role at the early
stage of the development of the course. Preparatory discussions have been made with several

members of the scientific stafl of universities and institutions.



2 Introduction

There has been a great development of econometrics and, in particular, in financial mathe-
matics in the past decades. Managing portfolios, making financial decisions under uncertain
circumstances have taken an important role either in research of economics and mathematics

or in practice.

One of the classical problems of the theory of finance and financial mathematics is the
optimal portfolio selection. Imagine a market where some financial assets (securities) are
available like treasury bonds, zero coupon bonds, stocks, options, futures. Let us suppose
that one is given a certain amount of capital which shall be invested in the market. The
capital can be allocated among the securities in many ways. Some allocations (that is
portfolios) may be more promising (e.g. in the sense that they have large expected value in
the future), whereas others can be less risky (e.g. in the sense that they have small variance

of future value).

The next questions arise naturally. Which is the portfolio one would like to choose
in such a market? What is the difference of the different individuals’ decision making and
what is it caused by? What measures or means could help us to characterize the individual’s
decision making, the risk aversion of the individual in such situations? These are some of

the problems we shall deal with in this material.



The main issue to study is the problem of financial decision making under uncertainty
and certainly our focus is mainly on portfolio choice problems. Thus, our settings are based
on utility theory which is the subject of the first part of the material. We discuss here the
concept of the underlying theory and study its main results which are fundamental for our
further work. The concept of Neumann-Morgenstern utility theory, decision making and
choice problem under certainty, ordinality and cardinality are the main topics of this part of

the material.

We discuss the important features of the individual’s utility function (i.e. of the in-
dividual’s preferences) regarding to the individual’s decision making under uncertainty. We
study the possible measures of risk aversion of the individuals based on their system of
preferences (risk aversion, absolute risk aversion and their characterizations are contained).
Furthermore, optimal portfolio selections and their relation with the demand for financial

assets are discussed in securities markets, which is the main object of the course.

The concept of stochastic dominance of financial assets (either of type first order or of
type second order) is given. Another important issue we cover is the measurement of the
riskiness of financial assets. For this, we study coherent measures, we focus on two very

widespreadly used risk measures, namely on Value at Risk and expected shortfall.

Several examples are given in the material. We remark that another important aim was
to give a precise mathematical formulation of the results which are usually omitted in many
financial books. The examples are also to emphasize the importance of the mathematical
and technical conditions of the certain statements and also to show that counterexamples
(with very realistic parameters) can be found to refute some relations which look very natural
from an intuitive point of view and therefore one would erroneously expect them to become

true in the theory.

Some of the important mathematical theorems are contained in Section Appendix to



help the better understanding and the easy use of the material. The Bibliographic Notes
provide more information about the literature of the underlying theory, its related areas and

references for the interested reader.



3 Utility Theory

More than a century ago the economic theory had the years of the marginal revolution. One
of its great breakthroughs was the beginning of the development of utility theory, which has
been playing a basic role in economics, especially in microeconomics, since that time. Many
models and problems are based on this theory. Such a problem is the individual’s decision
making under either certainty or uncertainty. First we present the utility settings needed for
our further purposes. However, it is not our purpose to present the whole concept of utility

with the most generality.

3.1 Preference Ordering

Let us assume that there are n (different) goods. The individuals are supposed to be able
to value the possible baskets of goods. A basket of goods is a vector x = (z1,...,x,) where
x; (1 = 1,...,n) indicates the amount of good i consumed if basket x is chosen by the

individual. Denote by B the set of all feasible baskets. Clearly, B C R".

3.1 Remark. In many cases it will be realistic to assume for all x € B that x > b, b € R",
where the inequality is meant coordinate-wise. If it is valid than B is said to be bounded
below (coordinate-wise). This assumption taken about the lower bound b means that though
a basket can have negative entries representing selling goods, e.g. labour services, this
opportunity is limited (bounded below). One can take B = {(z1,...,2,) | @i > 0, i =
1,...,n} though B is usually bounded because of the scarcity of goods or the limited income

of the individual.

3.2 Remark. Moreover, it is also usually supposed in utility theory that B is convex and
0 = (0,...,0) € B. Thus goods can be ‘infinitely divided’ into parts, for instance, 1/7 of

good ¢ can be consumed as well as 1, 2 or V2.



The preferences (or preference system) of the individual are described by an ordering
relation <. The statement

x =2y, x,y € B,

is read “y is preferred to x”. We may write y > x meaning the same as x < y. The
baskets y and x are said to be indifferent or the same, denoted by x = y, if both x <y and
y = x are satisfied. The basket y is strictly preferred to basket x, write y »= x or x <y

equivalently, if x <y but y and x are not indifferent.

We suppose that the preference ordering has the following properties.

(1) reflexivity, i.e. x < x for all x € B,
(2) transitivity, i.e. x <y and y = z imply together x < z, for x,y,z € B,
(3) linearity, i.e. for every pair (x,y) € B x B either y < x or x <y and finally

(4) continuity which means that for every x € B the set of strictly preferred baskets and

the set of strictly worse (not preferred) baskets are both open.

3.2 Utility Functions

So far we have built up a relation in order to represent the individual’s preferences. The
preference ordering enables the individual to make decisions about consumption plans. Ob-
viously, if a basket x is preferred to basket y then he or she? is willing to choose or buy

basket x of these two baskets. In other words, x is found to be more useful for him.

Now, having the concept of preference ordering, it seems natural to value each basket
such that the value of a basket would show the utility of the basket according to the individ-

ual’s preferences: a large value would correspond to a higher level of utility than a smaller

2For what follows, we will sometimes write ‘he’ instead of ‘he or she’ or instead of ‘individual’ for simplicity.



value. In term of mathematics, we look for a function
U:B—R
which satisfies the following properties:
x=y <= Ukx) <U(y) Vx,y € B.
Such a function is called utility function.

It is well known in microeconomics that such a function exists provided that our as-

sumptions above are valid. The precise statement is the following.

3.3 Theorem. Suppose that B is a separable and connected set in R™ and we have an

ordering relation on it which is denoted by =.

Then < is a preference relation on B, i.e. it satisfies properties (1)-(4) defined in Section

3.1, if and only if there exists a continuous function U : B — R such that

x=y <<= Uk <Uy)), Vx,y € B. (1)

Proof. First suppose that the preference relation satisfies properties (1)-(4). Then we

construct a function U which is appropriate.

For this let Y be a countable and dense set of baskets in B. The existence of such set
follows from the separability of B. Now due to countability we can consider Y as a sequence,
i.e. write Y = {yi}ien. First we shall define a function U : Y — R with property (1). We

give the definition of U by induction.

Set U(yo) = 1/2. If U(yo), U(y1),---, U(ym) are all defined then we take ymn,1 and

consider the following four cases.

(1) Ymo1 is indifferent to a basket which utility value has already been defined, i.e. there

is a index 0 < 5 < m such that y,41 = yj, or
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(2) Ymo1 is not indifferent to any of the previous baskets in Y such that there are two
indices 0 < 41,79 < m with y;;, < Ym+1 < ¥i,- In this case let 0 < k; < m and
0 < ky < m be two indices with U(yy,) = max{U(yi) | Yms1 = ¥i, 0<i <m} and

U(Yky) = min{U(y1) | yms1 < yi, 0 <i < m} respectively.

(3) Next take the case where y,11 is not indifferent to any of the previous baskets in Y

such that there is an index 0 < ry <m with ymy1 < yr, <yiforall 0 <i <m.

(4) Finally ym41 may not be indifferent to any of the previous baskets in Y such that

there is an index 0 < ry < m with ymi1 > yr, = yi forall 0 <7 < m.

Now set )
Uly;) in case (1),
) U(Ykl);U(Ykz) in case (2)7
U(Ym+1) =
U(yr .
(‘é v in case (3),
U(yry)+1 .
(y;) in case (4).

Note that the set A = {U(y;) | i € N} is dense in [a, b] where a and b are the infimum

and supremum of A, respectively. To see this it is sufficient to show that

B= {QE (a,b) |k;,neN} cUY).

By definition 1/2 is equal to U(yo). Then by the axiom of continuity the sets 4; = {x €
B | x < yo} and Ay = {x € B | x > yo} are both open and combining it with the
density of Y we get that there exist y;; and y;, in Y such that y;; € A; and y;, € A,.
Hence, U(yx) = 1/4 and U(y,) = 3/4 for some k and r (k,l € N). If k/2" = U(y,,) and
(k+1)/2" € U(y,,) than the set {x € B | y;, < X < yr,} is open as well which implies
that there is a basket y € Y with U(y) = (2k + 1)/2""!. Similarly argument shows that

if £ € N is the smallest (or largest) for a fixed n € N with k£/2" = U(y,) for some y, € Y

11



then either C, = {x € B | x < y:} (C, = {x € B| x > y,}) is empty and therefore
a=k/2" (b= k/2"), or C, is non-empty and open which implies that (2k —1)/2"*1 € U(yo)

((2k +1)/2"*! € U(yo)). Thus A is dense in [a, b).
Moreover, it is clear that U satisfies property (1).

With the aid of U we define U as follows. Write By := {U(y) |y €Y, y <x}, x€ B

and then define

sup By if By # ()
U(x) :=

a otherwise.

Furthermore, U = U over Y. It is clear that U(x) > U(x) since x € By. On the other
hand U(x) > U(x) would imply the existence of a basket y € By with U(x) < U(y) which

leads us to the contradiction x <y.

Now we shall check whether (1) holds for U. If x < z than By C B, and hence
U(x) < U(z).

To prove the other implication, first note that if x < y then there exist baskets y1,y2 €
Y such that x < y; < y2 < z (use the same argument as above) which implies that
U(x) < U(y1) < Ul(y2) < U(z). Thus, if U(x) < U(z) were valid together with x > z than

the latter would also imply U(x) > U(z) which is a contradiction.

It is only left to prove that U is continuous. The continuity of the utility function
follows from the continuity of the preference ordering. Indeed, if uw € U(B) then there is a
basket xo € B with U(xg) = u. Let A={x € B | x> %o} and B = {x € B | x < X¢}.

Then it is clear that
U ' ((u,00)) =A and U~ '((—oo,u)) =B

and thus these are both open. (Note that by the structure theorem of open sets in R it is

12



sufficient to check whether the inverse images of open intervals of type (u,o0) or (—oo,u)

are open in B.)

Turning to the opposite implication of the theorem, suppose now that we are given a

continuous function U : B — R which satisfies property (1).

It is easy to check the validity of the preference properties (1)-(4) defined in Section
3.1.

Reflexivity: since U(x) < U(x), x € B, thus x = x. Transitivity: U(x) < U(y) < U(z)
implies x <y =< z for all x,y,z € B. Linearity: given x,y € B we have either U(x) < U(y)
or U(y) < U(x), hence x <y or y < x is held. Continuity: taking a basket x € B and
recalling that

U '((u,00)) =A and U '((—o0,u)) = B,
where A= {x € B|x>x0} and B={x € B|x <X} it follows from the continuity of U

that A and B are open.

Thus the proof is complete. ([l

3.4 Remark. Note that U is not unique since any strictly monotone increasing transform
of U would be a utility function again, i.e. if ® : R — R is strictly monotone increasing then

®(U) : B— R would satisfy Theorem 3.3 as well.

In the following remark we collect some properties of the utility functions which are

useful to characterize the main features of the individual’s preferences.

3.5 Remark. Given a preference relation of the individual, we say that a function U is a

utility function representing the preference relation if it satisfies property (1).

In most cases it is fairly natural to assume that the individual prefers more to less,

i.e. given x > y (coordinate-wise), x,y € B, we have x > y. This property is called the

13



principle of dominance. In this case the utility function is strictly increasing. Furthermore,

in case of differentiability it has non-negative partial derivatives.

Since the information contained by the utility function about the preferences is not
more than equivalence (1), the preference ordering could be also characterized by the sets
ICy, ={xeB|x~x0}={xeB|U(x)=U(xo)}, (X0 € B). Such a set represents the

class of baskets indifferent to a basket and called indifferent curve or surface in economics.

Now suppose that U is a twice differentiable, increasing utility function. Let x° € B and
let us assume, furthermore, that U is strictly concave in a neighbourhood V of x° (V' C B).
(The economic explanation of concavity will be discussed later.) Note that a%iU (x%) > 0.
If x € V[)ICxo then any coordinate of x can be expressed by the remaining coordinates.

Indeed, by the implicit function theorem (see Appendix, Theorem 8.2) there exists a function

g on a neighbourhood V* of x? = (29,..., 2% ;, 2%, ,,...,2%) in R""! such that
U(I‘l, ‘e ,l’i_l,g(ZL’l, ey L1, L1y - - - ,xn),$i+1, ‘e ,In) = U(XO) (2)
where (z1,...,%i-1,%it1,...,2T,) € V*. In other words, if we fix the utility level (in our case

it is v = U(x%)) and we are only moving on the indifferent surface corresponding to this
utility level (i.e. the indifferent surface lying on x°) then the point of our location can be
identified by only n — 1 of the n coordinates, that is, any coordinate can be written in terms
of the others at least in a neighbourhood of x°. Thus ¢ is nothing else but x; (uniquely
determined by x1,...,%; 1, %1, .., Ty), so we will simply write x; instead of g (e.g. in (3))

to make the meaning of our setting more intuitive.

Hence it is clear now that the change of the consumption of n — 1 goods in the basket
will uniquely determine the change of the consumption of the remaining one good if we shall
attain the same level of utility (and of course if the changes are small enough not to get out

of V*). Now taking the partial derivative of (2) with respect to the jth coordinate one can

14



easily get )
_8% (XO) . oz U(XO)
Ox; 1 - U(x0)

i#£j, 1<i,j<n. (3)

The latter expression is called the marginal rate of substitution (between good i and good 7)
and denoted by MRS, ;. Intuitively it shows how many units of good 7 should be renounced

to keep the same utility level if one more unit of good j is to be consumed:

A.Q?Z'

MRS@]' ~ _A_Qj
J

Note that the indifference curves and the marginal rate of substitution are invariant to

any strictly increasing transformation of the utility function.

3.3 Ordinality Versus Cardinality

When the notion of utility function was first used, e.g. by Walras, Menger and Jevons, in
the 80’s of the last century at the time of the marginal revolution, the utility function was
expected to give more information about the “level of satisfactory” than property (1). The
above authors actually worked with utility functions of one variable (representing only one
good), that is they defined a separate utility function for each good. (Here we mention that
the utility of a basket was defined by the aggregate utility of the good’s utilities in this case.)
They assumed that the utility values are suitable not only to choose the better, for instance,
of two given baskets of goods but also to express by how much one alternative is better than
the other. For example, if U(zy) = 2 and U(z;) = 4 then they said that z; is found to be

twice as good or useful as z( for the individual.

Such a utility function is called cardinal in contrast to ordinal utility functions which do
not give more information about the baskets than what is expressed in (1). Thus Theorem
3.3 states the existence of a continuous ordinal utility function which is consistent with the

underlying preference ordering in the sense of property (1).

15



Thought first cardinal utility appeared in the economic theories and ordinality came
later we should not like to suggest that the latter is the right one, not even that it services
better the aims of the economic theory in general. It is still an important issue of recent
research in economics. We can only say that for certain problems the ordinal approach
provides better means but for other problems it does not. For our purposes ordinal utility
functions suffice, as we have seen in Theorem 1 and as we will still see it in the following

sections.

3.4 Utility Maximization

A classical problem in microeconomics is the determination of the optimal (meaning ‘the
most preferred’) basket if the individual possesses a certain income (or wealth). It is a
utility maximization over the set, say F, of the feasible (economically available) baskets.
Clearly, F = {x € B | >, x;p; < I}, where I is the income and p; is the price of the ith

good. So, our aim is to find the maximum of U over F.

3.6 Theorem. Let B be closed, convex, bounded below (coordinate-wise) and suppose that
0 € Band U : B — R is an increasing, continuous, strictly concave utility function. For any
price vector (pi,...,p,) with p; > 0,7 =1,...,n, and income I > 0 there is a unique x in
B such that

U(x) =max Ul(y)

yeF

where F = {y € B| >, vip; < I}. Furthermore, > "  x;p; = 1.

Proof. The set F is bounded above (clearly y; < I/p; fory = (y1,...,yn) € F), thus
F is bounded, closed and not empty, hence it is compact. Since U is continuous it must
attain its global maximum, say at x. If U took its maximum at x* € B, x* # x, as well then

we would have

x + x*
2

N 1
cF  with U<X+X)

5 > §U(X)+§U(X*) = U(x)

16



by the concavity of U. Hence x is unique. Finally, it is trivial that >  a;p; = I. Otherwise,

I-—S" poa
(x1+—zjl_1pZ Z,xQ,...,xn)

b1

for instance, the basket

would be strictly preferred to x. O
Solving the optimum problem

To solve such a problem of optimal allocation, one can use the method of Lagrangian
multipliers (see Appendix, Theorem 8.1) in case U is differentiable. Taking the partial
derivatives of U(x) + A(I — Y ., p;x;) with respect to z; (i = 1,...,n) and A we obtain the
following system from the first order conditions:

0
8@-

I — Zn:pia:i =0.
i=1

Since U is concave over the convex set F, a solution of (4) will necessarily be a global

U(x) = Ap; i=1,...,n
(4)

maximum of U over F.
The Second Law of Gossen

Now consider the n — 1 dimensional hyperplane 7' determined by I = Y7 | p;x;. It is
clear that the solution belongs to "N F. Furthermore, if the maximum is taken at an inner
point of T'N F in space T then we can find it with the aid of the Lagrangian multipliers.
However, the maximum might not be found with the Lagrangian multipliers if the point
where the maximum is achieved belongs to the set® (T N F) in space T. See also Examples
3.7, 3.8. (Note that the boundary of TN is meant to be taken with respect to the topology
of space T in T" and not in the n dimensional space R" where it would give back the set

itself.)

3Given a set A in a topological space, OA is to denote the set of boundary points of A.
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If the optimum is obtained from (4) then it has got the following property:
bi . . .
MRS],Z:_ Z%]v 1§Z,]§7’L,
bj
which can be easily seen from (4). Thus, at the optimum the marginal rate of substitution
(MRS;;), which is determined by the individual’s preferences, equals the (marginal) rate of
substitution provided by the market (p;/p;). One would certainly substitute some amount of

good j with good @ if M RS, ; was larger than p;/p;. Or equivalently, we have at the optimum

9 0

U(x 5 U(x)
o UX) _ 3, i#j, 1<ij<n, (5)
Di D;

which means that an additional unit of money would cause the same increase of the utility,
no matter which good would it be spent for. Formula (5) is known as the Second Law of

Gossen.
The demand curve

Now take a good, say i, and suppose that the prices of the remaining goods are fixed
in the market as well as the income and assume that the conditions of Theorem 3.6 remain
valid. Then by utility maximization there can be found the corresponding basket x,, to
any price p; > 0. Thus the set D; = {(p,q) | p = pi, ¢ = x,,;} can be derived and
drawn in R? (where z,, ; is the ith entry of the optimal portfolio. The set D; is called the
individual’s demand curve for good i since it shows us the relationship between the market
price of a good and the individual’s consumption from this good (provided all the rest of
the model is fixed). To study the demand curve and related problems is out of the scope
of this course. The interested readers are referred to introductory books on microeconomics
such as [Nordhaus & Samuelson] or [Kreps]. We will, however, investigate the individual’s

demand under uncertainty (see Section 4.4).

18



3.5 Commonly Used Utility Functions

In this section we assume that B = {x €¢ R" | x; > 0, ¢=1,...,n}. Furthermore, I > 0
will be the income of the individual and p;’s (p; > 0,4 =1,...,n) are to denote the market

prices of the goods.

3.7 Example. (Cobb-Douglas Utility Function) The Coob-Douglas type utility func-

tion is defined as follows.
U(X):Hx‘-” a; >0, i=1,...,n.

For convenience, we can use InU for the calculations (see Remark 3.4). Now, from (3) we

have

MRS;,; = o i ey g/ g (6)
s E%i Orjarlneg)  ai/vi axy

Intuitively, MRS, ; ~ Ax;/Ax; and combining it with (6) we obtain

Ax;/z;  ay

AJIZ/JIZ - a;
which shows us that for a certain increase expressed in terms of proportion of good j, a

constant proportion of good ¢ must be renounced everywhere in B provided that the level of

the utility remains the same. So, ‘the proportional rate of substitution’ is constant over B.

To get the optimal allocation from (4) we obtain a;/z; = Ap; (i = 1,...,n) and
I'=3%"" a;/\ Hence,

a; N CLZ'I
Ap; Di Zzzl ap

3.8 Example. (Linear Utility Function) Let

T; =

U(X):Zaixi with a; >0, 1=1,...,n.

i=1
In this case the marginal rate of substitution is constant:
a; ..
MRS, ; = —, 1<i4,5<n.
i

19



This means that the goods can be perfectly substituted with one another and therefore the
consumer maximizing utility will buy only one type of good, namely, the cheapest according

to his preferences. Let i be the index (i € {1,...,n}) for which

a; . Q;
— = max — .
pi  1sisn p;

Then an optimal basket is x = (z1, ..., x,) where

Note that x is not necessarily unique. If there is an index j € {1,...,n} such that i # j and

a;/p; = a;/p; then the set of optimal allocations is infinite.

3.9 Example. (Complementary Goods) Now suppose that the utility function is of the
form

U(x) = min{a,x; | i =1,...,n},
where a; > 0. Thus this utility function is continuous but not differentiable. Let x be a

basket and i € {1,...,n} an index such that
a;x; =min{a;z; | j=1,...,n}.

If ajz; > a;z; (j € {1,...,n}) then the individual possesses some of good j unnecessarily. To
make the meaning of ‘unnecessarily’ precise define o7 = a;z;/a;. Then x; > 2} and 2} would
be enough to attain the same level of utility than with x;, i.e. the amount x; —z7 is useless.
In other words, for a given z; we need exactly z; = g—]xz ofgoodj(j=1,...,i—1,i+1,...,n)
to attain the utility level u = a;x; without wasting any money. That is why such a utility
function is used in case of complementary goods. They are consumed in a certain ratio

(determined by the a;’s) but they cannot be substituted with one another.

Turning to the problem of utility maximization it is clear from the above argument
that a;z; = ajz; will be satisfied at the optimum for all 4,5 € {1,...,n}. Therefore the

optimal allocation is the intersection point of the line given by

1
r; = —t, teR, i=1,...,n

a;

20



and the hyperplane given by

Hence,

Further examples will be studied in the forthcoming sections.

3.6 Expected Utility

Utility functions defined in the previous sections give a nice interpretation of the individual’s
preferences and so (using the utility maximization) some classical problems of microeco-
nomics can be solved with the aid of utility functions, like optimal choice, the derivation of
individual’s demand function, etc. However, we usually must face choice problems involving
risk, that is we must choose from possibilities which have got uncertain outcomes. Take, for
instance, a portfolio of different financial assets: cash, bonds, stocks, futures, options, etc.
The value or payoff of such a portfolio at a future time point is uncertain (or risky) since it

depends on the future state of the world (or economy).

The idea of solving the choice problem in case of uncertainty is the maximization of

the expectation of utility. For this we need some further definition first.

3.10 Definition. Let X = (x1,...,X,,) withx; € B (i =1,...,m) and P = (p1,...,Pm)
with " pi=1,0<p; <1 (i=1,...,m). Then the pair (X, P) is called lottery.
Let 1L denote the set of all lotteries.

Given £, = (X1, PY),... Ly = (X*, P*) € L and ay, ..., € [0,1] with Zle a; = 1, the
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convex linear combination S ¢, ay L; is defined by (X, P) where

(ol 1.2 2 k k
X = (X1, Xy XD X X0 X ),
_ 1 1 2 2 k k
P =(a1pi,..., 01y, , 003, .., 0o s - D, o gl ).

Thus the convex linear combination of lotteries is defined to be a lottery again.

3.11 Remark. A lottery £ can be interpreted as a gamble with m different outcomes such
that p; is the probability of the event that x; will be the outcome of the gamble. In other
words, each lottery corresponds to a discrete random vector [ on a certain probability space
(Q, F,P) with P(I = x;) = p;. For simplicity, we will denote this random vector by L as

well.

As we made an ordering on the set of the basket of goods in Section 3.1, now we should

like to make an ordering on L.

Suppose that £; = (X1, P1) and £ = (X, P») are two lotteries. Let £; < L5 mean
that the individual prefers L5 to £1. Denote by £ = L5 and read ‘L, and L5 are the same
or indifferent” if £; = Lo and Lo < L;. If £; =2 L5 but they are not indifferent then L is

said to be strictly preferred to £;. We require the following properties.

(1) reflexivity: £ < L for all £ € L,
(2) transitivity: if £, < Lo and Lo =< L3 then £y <X L3 for all £q, Ly, L3 € L,
(3) linearity: if Ly, Ly € L then we have either £ < Lo or Lo <X Ly,

(4) continuity: if Ly, Lo, L3 are lotteries satisfying £ < L5 and £ = L3 then there exist

a constant p in [0, 1] such that pLy + (1 — p)L3 = Lo,

ominance: € L and p € |0,1] then there exists a lotter such that L 1s not
(5) domi If £ €L and [0,1] th h i 1 y L' h that £ i

indifferent with pL + (1 — p)L’,

22



(6) independence: if L < L', L, L €L, and p € [0, 1] then for each K € IL

pL+ (1—-p)K=<pL'+(1-pk.

Properties (1)-(6) might be called axioms, for instance, the sixth one is often referred

as the axiom of independence in literature.

We simply state now the basic result and omit the proof of it.

3.12 Theorem. If we have a preference ordering satisfying properties (1)-(4) in Section 3.1
and also an ordering on the lotteries satisfying properties (1)-(6) of this section then there

exists a function V' : L +— R such that for all L1, L, € LL
L1=Ly = V(L) <V(Ly). (7)
such that V admits the following representation:
V(L) = Zm: U(x;)pi, VL el (8)
i=1

where L = (X, P) = (X1, -, Xm), (D1, -+, Pm))-

Proof. First take two baskets x;, xo € B such that they are not the same. For
instance, let us assume that x; < x5. If such baskets do not exists then all the baskets were

indifferent of course and thus U could be chosen constant on B.

Let [x1,%X2]<x = {x € B | x1 < x X x3}. First we construct a function U on [x1,X2]<

which property 8 is valid for.
Define U(xy) =0 and U(xz) =1 and Ly, x, = {L € L | £ € [x1,%2]<}.

Now take a basket y € [x1,X2]< and denote by L, the lottery which has only y as a
possible outcome, i.e. P(Ly, =y) = 1. Due to the continuity of the preference relation there

is a constant ¢, € [0, 1] such that
'Cmathbfy ~ (1 - ty)Xl + 1y Xo.
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Moreover, such a constant is unique which follows from the monotonicity of the relation.

Define U(y) = t,. Hence we have

Ly~ (1-U(y))X:1+U(y)Xa. (9)

If £ € Ly, x, Wwith P(L =yi) =p;, i =1,..., k, where Zlepi = 1 then combining (9)

with the axiom of independence we get

L~ ZpiEm = Zpi [(1 —U(y:) X1 + U(Yi)XQ]
=1 =1 k (10)
X1+ pU(y)Xe = (1-EU(L)) X, + (EU(L)) X,

i=1

~ [1 - > Uy

i=1

The monotonicity of the relation together with (10) implies that

— E L, <E L,.

Note that with values U(x1) = 0 and U(x3) = 1 the only possible choice for the value
Ul(y) is t, if we want to achieve property (8). Since, taking a value different from U(y)
equation (9) would not remain valid. Thus we can see that a utility function U satisfying

(8) with U(x1) = 0 and U(xz2) = 1 must be unique over [x1,Xa|<.

Now we can extend U. To see this take a basket x3 which does not belong to [x;, X2]<.
Then we have either x3 < x; or X2 < x3. Suppose for instance the first case. (The latter
case can be handled analogously.) We can construct a utility function, say U on [x3, X3~ in

the same way as above. Then define

2oy Uy) = Uxa)
Uly) = U(Xz) — U(Xl)’ for y € [x3,%2]<.

Thus U(x1) = 0 and U(x;) = 1 which means that U and U must be equal over [xy,Xs]<

because of the uniqueness of U.
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So we have proved that U can be extended over the whole B.
O

Now, let I; and [y be the corresponding random vector of the lotteries £; and L,

respectively. The above theorem states the existence of an ordinal utility function such that

It can also be proved that U in Theorem 3.12 is unique apart from a strict monotone

increasing linear (i.e. positive affine) transformation. The precise statement is the following.

3.13 Theorem. Suppose that the conditions of Theorem 3.12 are valid. Let U; and U, be

two ordinal utility function and define for k = 1,2

m

Vi(£) = Z Uk (xi)pi, VL e L,

i=1
where L = (X, P) = ((X1,...,Xm), (P1,---,Pm)). If Vi and V5 both satisfy property (7) then

there exist constants a,b € R, a > 0 such that
Us(x) = alUy(x) + b, x € B.

3.14 Remark. The function U in Theorem 3.12, that is a function which the expected
utility property (1) is held for, is called Neumann-Morgenstern utility function or index.
Although Ramsey was the first who introduced the theory of expected utility first from a
modern approach in the 30’s, Neumann and Morgenstern, who developed the theory also

but separately from Ramsey, are said to be the establishers of the theory at issue.

For what follows, a utility function will be meant to be Neumann-Morgenstern type

unless it is defined otherwise.
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3.7 Paradoxical Empirical Results

Though the concept of expected utility is commonly used in economics there are some known
experimental results which state that some of our assumptions are refuted in practice. Most

of these experiments refute the axiom of independence.

The first and best-known empirical refutation was the Allais paradox. The test of
Allais has been repeated by many other researchers in different ways, but each contradicts

the axiom of independence. Here we present the test of Kahnemann and Tversky.

Students were given several question. They were asked to choose one of the following

two lotteries which were offered to them for free:

e Lottery A = ((4000 IS, 0 IS), (0.8, 0.2)), that is they can gain 4000 IS with probability

0.8 and gain nothing with probability 0.2. (Here IS denotes the Israeli Shekel)

e Lottery B = ((3000 IS), (1)), so this game assures the owner to obtain 3000 IP surely.

The majority of the students, namely 80%, chose the second lottery. Then they were given

again a choice problem, this time with the following lotteries:

e Lottery C = ((4000 IS, 0 IS), (0.2, 0.8)),

o Lottery D = ((3000 IS, 0 IS), (0.25, 0.75)).

Now, 65% of the same students gave answer C' to this question. So, there must have been
many of them who chose B in the first case and C'in the second problem. If those had made

their decision on the basis of expected utility of the lotteries then we would have

U(4000) - 0.8 < U(3000) (11)
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according to the first answer where U is their utility function and we assumed U(0) = 0
which can always be obtained by a linear transformation (see the previous section). (Note
that in this examples we only indicate one variable of the utility function representing the

good called ‘currency’.) However, their second decision implies
U(4000) - 0.2 > U(3000) - 0.25

which contradicts inequality (11) and actually the axiom of independence. To see this let Z
be the lottery which gives payoff zero surely. Then it is easy to see that C' = 0.25A4 + 0.752
and similarly D = 0.25B + 0.75Z. But, if the axiom of independence was valid then we

would have

In another questionnaire Kahnemann and Tversky first put the next question to some
people.

Question I. You are given 1000 IS and then choose either (a) or (b):

(a) you can gain 1000 IS additionally with probability 0.5 or nothing with probability 0.5,

(b) you get 500 IS.

Question II. You are given 2000 IS and then choose either (c) or (d):

(¢) you may loose 1000 IS with probability 0.5 or nothing with probability 0.5,

(d) you loose 500 IS for sure.

Surprisingly, 84% of the people turned out to prefer I/(b) to I/(a) but only 27% pre-
ferred 11/(d) to 11/(c). However, I/(a) and 1I/(c) can be represented by the same lottery,
namely by ((2000 IS, 1000 IS), (0.5, 0.5)) and the same is valid for the pair I/(b) and II/(d)
which both coincide the lottery ((1500), (1)).
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Finally we mention an experiment made by Lichtenstein and Slovic about the so-called

preference reversal. They presented two gambles:

I a small amount of money can be gained with a large probability,

IT: a huge amount of money can be gained with a small probability.

The majority of the people preferred the first game. Next they were asked to price the two

gambles and mostly a higher price was given to the second gamble.

These empirical results show that people do not always make their decisions in a
rational way or they do so but not on the basis of our assumptions. Considering the second
example, some scientists suggest that utility functions of the possible gains and losses should

be used instead of the utility functions of wealth.
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4 Risk Aversion

In this section we shall study further properties of the utility functions. Our interest is
focused on the behaviour of the individual with respect to risky assets (assets which have
random value). The underlying analysis will show us what circumstances will lead the
individual to the acceptance of risky assets and what the relation is between the acceptance

and the form of the utility function.

4.1 Risk Aversion

Notational remarks As we mentioned before, in the following the utility function, say U,
will always be a Neumann-Morgenstern utility function (see Remark 3.14) unless it is defined
otherwise. Although U is a multivariate function (having as many variables as types of goods
are given), in most of the financial problems we are going to deal with it is sufficient to study
only one variable representing the ‘money’ as a good. In these cases utility functions will
be indicated as univariate real-valued functions for simplicity. Thus the rest of the variables

are supposed to be fixed and therefore we omit to indicate them.

4.1 Definition. Let U : I — R be a utility function, where I C R is an interval, and £ be a
random variable on a certain probability space and with values in I. Then & is said to be a
gamble. Let P € R and suppose that E |{| < oco. Then the pair (¢, P) is called a fair gamble

or P is called a the fair price for the gamble £ if E € = P.

We call the individual having utility function U risk averse at P € I if he is unwilling
to accept or indifferent to any (£, P) fair gamble, i.e. E U(¢) < U(P). If an individual is
risk averse at P and he is not indifferent to any fair gambles with price P then he is said to
be strict risk averse at P. If he is risk averse or strict risk averse over the whole I then he

is said to be (global) risk averse or (global) strict risk averse.
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4.2 Theorem. Suppose that an individual has utility function U : I — R where I C R is
an interval.
Then the individual is (strictly) risk averse at P € R if and only if U is (strictly) concave at

P.

The individual is (strictly) risk averse if and only if U is (strictly) concave.

Proof. We only have to prove the first statement since the second is a direct conse-

quence of it.

Sufficiency. Let U be concave at P € I. Then, by the concavity, there exists a constant
c such that

U(x) < c(x— P)+U(P), forall ze€l, (12)

and hence for all fair gamble (£, P) we have
U§) <c(§ —P)+U(P). (13)

Taking the expectation of (13) the first term on the right-hand side vanishes and we obtain
the desired statement:

EUE) <UES).

Necessity. Consider a simple gamble & which has only two possible outcomes, x and y
such that p = P({ = z) and 1 — p = P({ = y) and suppose that pxr + (1 — p)y = P. Then

the risk aversion at P implies

E (U(€) =p Ula) + (1 - p) Uly) < Ulpa + (1 - p)y) = U(P), (14)

from which the concavity at P follows.

The proof in the case of strict concavity and strict risk aversion remains almost the

same apart from minor changes like in (12), (13) and (14) the strict inequalities are satisfied

if x,&,y# P. O
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4.3 Remark. Note that the first part of the proof of Theorem 4.2 is actually the proof of
Jensen’s inequality. Moreover, the above theorem states nothing else but the fact that a real
function ¢ is concave if and only if E g(&) < ¢g(E &) holds for all random variable taking

values in the domain of g.

4.4 Remark. Although our interest is mainly focused on financial problems we mention
that the statement of Theorem 4.2 can be generalized by making some modifications in
the above setting. In fact we can handle the case of more goods as it might be useful for
the reader interested in microeconomics since risk can occur in many problems of decision

making.

To see this let & = (&,...,&,) be a random vector with values in B and suppose
that E |&| < oo (i = 1,...,n). Recall that U is defined on B. Given income I and the
market prices of the goods py, ..., p,, denote the optimal allocation corresponding to I (see
Theorem 3.6) by x7*. Then we call the price P € R fair for the gamble ¢ for the individual if
UEE =U (xft). This means that the gamble ¢ is indifferent to income P if the expected
utility of the gamble is the same as the maximal utility which can be achieved by the optimal

basket corresponding to P. We have » ", pix% = P.

It is clear now that one can get back the setting of Theorem 4.2 by choosing n = 1 and

pl = 1
Now the above theorem can be reformulated as follows.

The individual is unwilling to accept any fair gamble (&, P) with E & = x if and only if
U 1is concave at x.
The individual is unwilling to accept any fair gamble (that is he is risk averse) if and only

if his utility function is concave.

The proof of theorem 4.2 can be rewritten almost literally. The concavity of U at E &
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now implies the existence of a vector ¢ € R™ such that
Ux) <UEE) +(c,x—EE), vxeB,

where (-, -) denotes the inner product in R”. Hence we get the sufficiency in the same way
again. For the necessity we only need to replace the values  and y in (14) with vectors from

B such that an appropriate convex combination of them equals E £.

Note that the above definition of fairness of a gamble is made on the base of a particular
preference system. However the utility plays no role in Definition 4.1. In case of several goods
the optimal allocations with respect to different preference systems might vary, even if they
correspond to the same income. Therefore, denoting by P; and P, the fair prices of a gamble
¢ with respect to utility functions U; and U; respectively, P; is the market price of basket
xi;f” !, where x%”" denotes the optimal allocation for income P with respect to U; (i = 1,2).
Then U;(E &) = U; (xi;fpt) (1 = 1,2), but the relation between U, (x};lo”t) and Us (xf;;”t) can

be anything, as well as between P, and Ps.

To get rid of the dependence on the utility one could define the fair price of £ by
P =>3"" pE & which is the market price of E . The difference in the two definitions can
be explained as follows. In the first we fix the utility of E £ and offer the individual the
exact amount of money by which the fixed utility can be attained using utility maximization.
In the second definition, however, the market value of E £ is offered the individual for the
gamble from which the basket E & can be purchased, obviously. These are equivalent only
if there is only one good, like in Definition 4.1, or if [E ¢ is an optimum, that is x‘{/pt =KE¢

where V = >"" | p;E &. However, ‘in large’ both imply the equivalence of the individual’s

(global) risk aversion with the (global) concavity of his utility function.

The first answer could be called Hicks-type whereas the latter one Slutsky-type, since
in many microeconomic problems it is possible to achieve two different answers by deciding

whether to give the consumer, who is having a certain basket, the same purchasing or welfare
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conditions (i.e. to make the same utility level available for him) or to make the same basket
available for him. For our purposes the first alternative seems suitable since the individual

is supposed to make his purchasing decisions with the aid of utility.

4.2 Measure of Risk Aversion

Now consider a gamble £ with [E £ = P. Suppose that the individual has a strictly monotone
increasing utility function U which is strictly concave at P. Thus he does not accept the fair

gamble (£, P). By the monotonicity of U there exists a unique positive value P* such that

UP — P =EU(¢). (15)

Any price in (P — P*,00) would lead the individual not to accept the risky asset ¢,
but he would undertake it for less than P — P*. To put it in another way, he is ready to
reduce his wealth P by P* at most in order to avoid the risk of holding £&. One can call P*
the insurance premium which can be a possible measure of the individual’s risk aversion at
point (wealth level) P with respect to gamble . The higher the insurance premium is the

more the individual is risk averse if (£, P) is offered to him. It is trivial that P* depends on

.

Theorem 4.2 explains why people are willing to use insurance services. Having in mind
the proof of this theorem and recalling the notations used in it, suppose now that U is convex
in a subdomain J. Then it is trivial that any gamble ¢ with property P(§ € J) = 1 will
be accepted by the individual. Thus an individual, for instance having a utility function
with convex and concave parts, might refuse some risk but take another. This is a possible
explanation of the fact that some people are ready to pay for insurance but on the other

hand they also buy lottery tickets regularly.

4.5 Definition. Let U be a strictly concave, increasing utility function on interval I. Sup-
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pose that & is a random variable having values in I with E |£| < co. Then P(§) € R is called
the insurance premium for gamble £ if U(E £ — P(§)) =E U(§).

4.6 Definition. Given a twice differentiable utility function U : I — R we will call

wp- U0 g

the (relative) risk aversion (at P) of the individual whose utility function is U. The value

RA(P) = R(P)-P (P € 1) is said to be the absolute risk aversion at P.

This measure of risk aversion has been introduced by Arrow and Pratt. It has got two

important features which makes it easy to use.

First, it is invariant to the scaling of U. To see this recall that the Neumann-

Morgenstern utility function is determined only to the extend of an affine transformation.

But having U(P) = aU(P) +b (a > 0, b € R),
U"(P)/U'(P) = U"(P)/U'(P),  Pel,

and therefore the absolute risk aversion is uniquely defined at any wealth level (P) in case

of a given preference system.

Secondly, it is also clear from the definition that R(P) is derived only from the utility

function and it does not depend on the gamble.

However, we can find some approximate relation between the insurance risk premium
(P*) and the absolute risk aversion which explains the choice of Arrow and Pratt. For this,

suppose that U € C3(I) and take Taylor expansion of U around P. Then we get

EUE) =U(P - P*) =U(P) - U (P)P* + @P*Q (16)
with an appropriate P € (P — P*, P) and
U(ew) = U(P) + U'(P)E) - P) + i (ew) — P2+ T2 ey pyr (1)
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for all w € Q, where ¢ is defined on a probability space (2, F,P) and P(w) is in the interval
determined by the endpoints £(w) and P for all w € Q. Taking the expectation of (17) and

combining it with (15) and (16) we have

—U'(P)P* + —Uﬂép ) pr _ Lﬂép ) Varé +E (U’Nép ) (€ - P)3) . (18)

In equation (18) the last terms of both hand sides are small compared with the other terms if

¢ takes its values in a small neighbourhood of P. Hence we get the following approximation.

P*~ — R(P) Var¢, (19)

N —

which shows us that the insurance premium can be written as a product of two factors.
One factor is determined by individual’s preferences and the other depends only upon the
gamble. An increase of the risk aversion or of the variance of the gamble would both make

the individual ready to pay more for avoiding the risk.

In (19) we gave only an approximation which is valid in a certain neighbourhood of
P. The following theorem tells us more about the absolute risk aversion and explains why

it can be suitable to characterize the risk aversion of the individual indeed.

4.7 Theorem. Let U; : I — R be a monotone increasing, strictly concave utility function
for i = 1,2 and let us suppose that U; € C3(I) where I is an interval. Then the following

three statements are equivalent.

(1) Ri(x) > Ry(x) for all x € I, where R; (i = 1,2) denotes the relative risk aversion of

an individual having utility function U,
(2) there exists a twice differentiable real-valued function G defined on Us(I) such that
G'(x) >0, G'(x)<0 ze€UI)

and

Ui(z) = G(Ux(x)) holds for =z € Uy(I), (20)

35



(3) Pi(&) > Py(&) holds for any random variable & which has finite expectation and takes

values from I, where P;(§) denotes the insurance premium with respect toU; (i = 1,2).

Proof.

(1) = (2) Due to the strict monotonicity of U,
Go) = (U @), =€ Uy(d),

is a well-defined, twice differentiable function on Us(I) and (20) holds for G. Taking the first

two derivatives of (20) we obtain
& (Un(a)) Ua) = Ul (@), 1)
G" (Us(x)) (Us()) + G (Us(2)) U (2) = Ul (z), w €. (22)

Now G'(z) > 0 (z € I) follows directly from (21). Furthermore, dividing (22) by (21) and

changing its sign we obtain

2

—G" (Ua(2)) (Ug())” — ( 2(2)) U3 ()
Rl(!E) G’( 2(1,)
(23)
- ) - S e >
- AT

Thus the quotient in the second line of (23) must be positive (because of (1)) which implies

G"(xz) <0 for xz € 1.

(2) = (3) Now suppose that ¢ is a random variable taking values from I such that
E |£] < co. Let W = E ¢ and note that the concavity of G follows from (2). Then by

Jensen’s inequality
U(E¢— Pi(&) =E U (&) =E G(Ux(€)) < G(E Us(€))

= G<U2(IE £ — Pg(g))> = U (E ¢ — Py(9)),

and hence P»(§) < Py (€).
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(3) = (1) Now let P € I, ¢ > 0 and & be a random variable such that P(|{ — P| =
e) =1and E ¢ = P. Using Taylor expansion for U; and Us at P as in (16) and (17) we can

rewrite (18) as follows.

Ui'(P)
2

Varf—kE@({—P)?’, for i=1,2, (24)

_ U/l(P)

—Ui(P)P(§) + 9

P(¢)?

where | P, — P| < Py(¢) and P; (i = 1,2) is a random variable such that P(|P, — P| < &) = 1.

Writing (24) for ¢ = 1 and for i = 2 and combining them we obtain

Uy (P2) 1, oo UT(P1)

Pi(§) — () + U1(P) P(§) UI(P) Pi(€)?
— 3 (rup) - rup)) e+ m B e pyp g W ey
If € is small enough then
sgn(PA(6) ~ PA(€) = sgn (Pl © - P + o pe? - T P1<s>2)
— sgn G (Ry(P) — Ry(P))<?
1 U'(h) 3 1 UY(R) 3
(o s P g e ) ))
= sgn (5 (Ra(P) = RaP) ) = sgn(s(P) = RalP)).
Hence Py (&) > Py(€) implies Ry (P) > Ry(P) and thus the proof is complete. O

4.3 Portfolio Selection

The problem of portfolio selection is a basic issue of microeconomics and particularly im-
portant in the theory of finance as well as in its application when some financial decisions

are needed to be made.

To put it in general, consider an individual or any financial institution possessing a

certain amount of capital which is to be invested. There are some financial assets available
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for the investor in the market, for instance currencies, several kinds of securities like bonds
(e.g. treasury or zero coupon ones), stocks, futures, swaps, options. Then the task for the
investor is clearly to allocate the capital among the assets and therefore one can immediately
see the analogy of this problem to the choice problem studied in Section 3.4. We have again
a constraint given by the initial capital to be spent but many sorts of other constraints can

also occur such as short sales of stocks might be forbidden or just limited to a certain extend.

In this case, however, an important difference with the market prices of goods is the
fact that we have financial assets the prices of which are known at the time when the portfolio
is selected but these prices are supposed to be changing randomly after the selection (unlike
the goods’ prices, see Sections 3.4, 3.5). Therefore we will study a time period [0, 7] where
0 indicates the time of selection and T is a time point in the future, say terminal time. The
asset prices change randomly over [0, 7] but we shall assume that the decision maker is given
the law of these random changes. First we study a one period model, i.e. the simple case
when the prices change only once after time 0, namely, at time 7. More generally, one can
consider a multiperiod model with more time points (called trading times) in [0,7] when
the assets are supposed to take new prices which are announced in the market. Or one can
study the model in which the prices can be changing continuously over the observed time

interval.

Having a certain set of feasible allocations what will be called portfolios, we should like
to choose the optimal portfolio. The meaning of ‘optimal’ depends on our purposes here.
The value of a portfolio at time 0 is certainly equal to the initial capital but random at the
terminal time. Thus one could look for the portfolio which provides the largest expected
utility value in the set of the feasible portfolios and call it optimal. Others might determine
first a minimal level what the portfolio value should exceed at time T surely and then look
for the optimal one of those as in the previous case. Another problem could be to minimize
the variance of the portfolio value of those which have larger expected utility value than a

certain level.
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In the following we will deal with the problem of maximizing the expected utility of
the portfolio. We will assume that there is an asset, indicated by index 0, which has non-
random rate of return, say ro. In other words, ry is a fixed interest rate which means that
if we invest [y amount of money in this asset at time 0 then it will worth 5y(1 + r¢) surely
at time 7. Similarly, r; will denote the rate of return of the i-th asset which is, however, a
random variable. To put it differently, r; can be considered as a random interest rate and
thus investing [; in asset ¢ will lead the investor to possess [;(1 + r;) at the terminal time.
Let Xy be the initial capital (to be invested) and 3; (i = 1,...,n) denote the money invested
in the i-th asset. We have a portfolio m = (5o, b1, . . ., 3,) with value equal to Xo = >, 5;

at time 0 and

XF=> B(l+m)= (Xo —Zﬁz) (L+70)+ Y Bi(1+7)
=0 =1 =1

= Xo(l —+ 7’0) + Zﬂz(m — 7“0)

i=1
at time 7.

4.8 Definition. Let (€2, F,P) be a probability space, 1o > 0 and fori = 1,...,n let r; :
Q) — (—1,00) be a random variable on the underlying probability space such that E r? < oo
and P(r; = o) < 1 and write r = (ro,r1,...,T5).

Then the set {Q, F,P,r,n} is said to be a securities market (with n risky assets).

An n+1 dimensional vector m = (o, 31, - - -, Bn), 0i € R, is called portfolio, where 3; indicates

the amount of money invested in asset i.

The condition P(r; = rg) < 1 does certainly not cause loss of generality since financial
assets with rate of return satisfying P(r; = r9) = 1 are indifferent to the riskless asset with

interest rate rg.

It is also realistic to assume (though it is not included in Definition 4.8) that the rate of
return of a risky asset takes larger and smaller values than rq, both with positive probability.

Otherwise, P(r; > rg) = 1 or P(r; < rg) = 1 would both lead the investor to realize as large
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profit as he wants by getting a loan on asset 0 and putting that money in asset ¢ in the first
case or, in the second case, by acting exactly in the opposite way in the market as in the

first.

Such an opportunity of gaining profit without any risk and with no need of initial capital
is called arbitrage. Similarly, the condition P(r; < r;) <1, fori # j, i,j5 € {1,...,n}, can

be also required in our problems.

4.9 Notation. In the following T" will denote the terminal date when the returns on the
assets are realized and X7 denotes the value of portfolio m at T' as we already used this

notation in (25). Furthermore we define

CXOZ{W

which is called the set of feasible portfolios corresponding to initial capital X, if the trading

T = (Bo, B, ..., Bn) €R, Zﬁz':Xo}
i=0

with the assets is not limited and hence the (3;’s can take any real value.

4.10 Lemma. Let U € C*(R) be a strictly concave utility function, Xy > 0 and assume
that {Q, F,P,r,n} is a securities market.

Then ©* is an optimal portfolio meaning that

EU (X7 ) = max E U (X7]) (26)
WECXO
if and only if
E (U’(X%*)(m—ro» =0 for i=1,...,n. (27)
Furthermore, if rq,...,r, are independent then the optimal portfolio, if there is any, is

unique.

Proof. Note that n of the entries of a portfolio 7 can be chosen freely as long as m € C'x,

and then the remaining entry is uniquely determined by them. Let 7 = (5o, 01, ..., Bn) € Cx,
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and define
F(Br,....0n) =EU(X})=EU <X0(1 +79) + Zﬁi(m — r0)> : (28)
i=1
Now we are looking for the maximum of F over R". Since U € C?*(R) the expectation
and the differentiation can be interchanged in the first order condition for the maximum at

B = (01,...,0,) and we obtain

0 o o o
55,79 =E 55U (Xp) =E (0" (X i = 10)).

0=

The function F' is concave over R™ which can be verified as follows. Let § € R™ and

z€R(i=1,...,n) and define 7 = (Xo — >, i, B1, - - -, Bn). Now we have

Z Z zlz] 85 65 Z Zzisz U" (XT) (ri = r0)(r; —70)

=1 j5=1 =1 j5=1

=E U" (X7) <Zn: 2i(ry — 7’0)> <0

i=1

(29)

since U" is negative everywhere. The concavity of F' follows from (29) which means that the

first order necessary condition (27) for maxima derived above is sufficient as well.

Moreover, if there exists an optimum then (27) implies P(r; — ro < 0) > 0 and hence
P(r;—ry > 0) > 01is valid as well for j = 1, ..., n. Therefore it follows from the independence
of the rates of return of the risky assets in the market that the left-hand side of inequality (29)
is negative provided that z; # 0 for some ¢ in {1,...,n}. This implies the strict concavity

of F over R™ and thus the uniqueness of the optimum. O

4.4 Demand For Financial Asset

One could expect some relationship between the individual’s risk aversion and the way he
chooses an optimal portfolio since, as we have seen before, the risk aversion characterized

the behaviour of the individual under uncertainty. There can be found such relationship,
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indeed. To see this we will mainly deal with the simple market where a riskless asset and

only one risky financial asset are available.

In economics a good is said to be normal if the individual’s demand for the good
increases as his wealth (or income) increases whereas the demand in case of a so-called
inferior good decreases as the income increases. The same properties can be defined for

financial assets as follows.

4.11 Definition. Suppose that U is a strictly concave, monotone increasing utility function
and {Q, F,P,r,n} is a securities market such that for each X > 0 there is an optimal portfolio

7(X) = (Bo(X), ..., 0.(X)) in the sense of (26).

Then asset i (i € {0,...,n}) is called normal if 3;(X), the demand for the asset at
wealth X, is a monotone increasing function of X whereas it is called inferior if 3; is monotone
decreasing.

If ; is differentiable at X and it does not vanish at X then

dBi(X)
dBi(X) X
. _ _dX _ ?
=50 = Tax pxy 70

is said to be the wealth elasticity of the demand for asset i at wealth X.

Intuitively, the elasticity shows the change of the demand for the risky asset in terms of
percentage if the wealth is changed by one percent. Therefore an elasticity value larger than
1 means that the relative proportion of the risky asset in the optimal portfolio will increase
if the wealth increases whereas for €(X) € [0, 1) this relative proportion decreases. The case
£(X) = 1 does not cause change in the proportion of the risky asset at issue. But negative

elasticity means the decrease of the total demand for the risky asset as the wealth increases.

4.12 Theorem. Let U € C*(R) be an increasing, strictly concave utility function of an
individual possessing capital Xy > 0 in a one-risky-asset securities market {2, F,P,r, 1}.

Suppose, furthermore, that 7 = (3§, 57) is the optimal portfolio for X, in the sense of (26).
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Then

By >0 — Eri>nr

and similarly

By <0 “— Enr <ro.

There exists an optimal portfolio for each X > 0 if either

lim U'(x) =0  or lim U'(z) = co.

r—00 r— —00

Proof. Recall the function F' defined in (28) which is now a univariate function. Define

the portfolio my = (Xo,0). Then taking the derivative of F' at 0 we have
F'(0) =E U (X}°) (ry — o) = U'(Xo(1 +70)) (E 11 — 70). (30)

Since F' is strictly concave and U’ > 0 everywhere, it is easy to see from (30) that the
location of the maximum of F'is larger than 0 if and only if E r; — g > 0 and smaller than

zero if and only if E r; — rg < 0.

In the proof of Lemma 4.10 we showed the strict concavity of F' from which it is clear

that F” is strictly monotone decreasing. By the monotone convergence theorem

lim F'(3) = Jim E U'(Xo(1 + 7o) + B(r1 — 19)) (11 — 70)

B—00
n
=E lim [U’ (Xo(l + 7o)+ B(r — 7‘0))(7”1 = 7‘0)]
B—00
(31)
+E ﬁh_)Holo [U/(Xo(l + 7o) + B(r1 — 7’0))(7“1 - 7’0)}
=u E [ry —ro|" +u_E [r — 1],
where uy = lim, oo U'(z), u— = lim,,_» U'(x) and [-]* = max(0, ), []- = min(0, -). Note

that E [r; — ro]"™ > 0 and E [r; — 9]~ < 0 and therefore it is clear that the right-hand side
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of (31) is negative or equal to —oc if either u, = 0 or u_ = co. With a similar argument,

Sim F'(3)=E Sim [U'(Xo(l +70) + B(r1 —10)) (r1 — ro)}
+E lim [U’(Xo(l +10) + Br1 —10)) (11 — ro)] ) (32)

=u_E[ry —ro]t +u E [ry —10]” >0,

if uy =0 or u_ = oo holds. Finally Darboux theorem provides a point 3 where F’ vanishes

and thus (27) is achieved. O

4.13 Theorem. Let us assume that U € C*(R) is a monotone increasing, strictly concave
utility function and {Q, F, P, r, 1} is a one-risky-asset securities market where the risky asset’s
risk premium (E r —rq) is positive. Suppose that the optimal portfolio w(X) corresponding

to capital X exists for any X > 0.

If R, the risk aversion function of an individual having utility function U, is strictly
decreasing over R then the risky asset is normal (for the individual).
If R is strictly increasing over R then the risky asset is inferior.

A constant relative risk aversion on R implies constant demand for the risky asset.

Proof. Define

f(X,8)=E (U/(X(1+To) + B(r1 —7’0))(7“1 —7’0)), (X,B8) € (0,00) xR

and note that f has continuous partial derivatives, in particular

%);6) =E (U"(X(1+70) + B(r1 —710)) (1 —70)*) <0 V(X, ) € (0,00) xR.

Applying the implicit function theorem (see Appendix, Theorem 8.2), there exist a function
B € C*((0,00)) such that

f(X,B(X)) =0 for X € (0,00)
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and hence we obtain the following. For Y > 0

df (Y, B(Y))

% =E U" (X™)) (1 470) + 5/ (Y)(r1 = 70)) (r1 — 70)

=EU" (X™™) (14 1o)(r1 —70) + BYV)EU" (X™) (ry —19)* =0

Recalling U”(z) < 0, z € R, and P(ry # ry) > 0 we have

ds EU" (X™OD) (1 + 7o) (r1 — 7o)
dy —— —EU" (X)) (r; —r¢)2

Y >0, (33)

and hence

gy E U” (X™) (1 +ro)(r1 — o)
sgn <—) = sgn < _E U” (Xﬂ'(Y)) (,ral _ 7“0)2 )

(34)
= sgn(E u” (X”(Y)) (r1 — 7’0)>.
Now suppose that R is strictly monotone decreasing. Then
R(Y(1+79)) > R(X™)) = R(Y(L+170) + BY)(ri(w) —10)) (35)

for each w € { r; > 1o } (for this note that 3(Y") > 0 holds due to Theorem (4.12)) and
R(Y(1+ 1)) < R(X™™)) = R(Y (1 +10) + B(Y)(r1(w) — 70)) (36)

for each w € { r; < ro }. Multiplying (35) and (36) by —U’ (X™)) (r1(w) — ro) and taking

the expectation we finally obtain
EU" (X™) (ry —10) > —R(Y(1+10))EU" (X™) (ry —19) =0
which together with (34) implies the first statement.

The second statement can be proved in the same way whereas the third is an immediate

corollary of the two previous ones. |

4.14 Theorem. Let us suppose that the conditions of Theorem 4.13 hold.
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If R 4, the absolute risk aversion of the individual, is strictly increasing over R then the

wealth elasticity is less than 1.
If R, is strictly decreasing over R then the wealth elasticity is larger than 1.

Finally, constant absolute risk aversion make the elasticity equal 1.

Proof. Using formula (33) one can write the elasticity in the following form. (For
convenience € will be simply used to denote the elasticity of demand for the only risky asset

of the market in this proof.)

day) v Y - B(Y)
=y iy T )
EU" (X™)) (1 +1o)(r1 — ro)Y + BY)E U” (X™)) (1 — 1p)?
—BV)E U” (X~07) (ry = 10)?
| EUTCD) (= ) (X70)
— T SBWE T (X)) (= 7o)

=1+

Therefore

sgn(e(Y) —1) = sgn(IE U" (X)) (ry — 1) (X)) ) (37)

Now take the case when R4 is strictly monotone decreasing. Then
U" (X™™)(w)) (X (W) (ry(w) — 1) = _RA<(XW(Y)(M))>U/ (X" (W) (r1(w) — 7o)

< —Ry4 (Y(l + ro))U' (X’T(Y)(w)) (r1(w) — 7o)
holds if either ry(w) > rg or ri(w) < ro and we know that P(r(w) < r9) > 0. Hence we

conclude with
E U (X" (X)) (ry —10) < —Ra(Y (L +70))E U (X™™)) (1) — 19) =0
which together with (37) completes the proof of the first statement.

Clearly, the proof of the other two statements are analogous. O
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5 Stochastic Dominance

So far we have seen some useful notions to characterize the individual’s preferences under
uncertainty and, in particular, when he is acting in a financial market. There occurs naturally
the question of finding some features of the financial assets in order to compare their riskiness.
Such a feature of the assets can be especially useful if it has some consequence about the
market behaviour of a (large) class of individuals regarding to these assets. The classes of
our further studies are the class of risk averse individuals and the class of individuals who

prefer more to less.

For this investigation, we will use the concept of first and second order stochastic

dominance.

5.1 Definition. Let {Q, F,P,r,n} be a securities market and suppose that the individual

has a continuous utility function U. Let i,j € {1,2,...,n}.

Then we say that the individual prefers asset i to asset j if

EU1+7r)>EU1+7;).

Asset i dominates asset j in the sense of first order stochastic dominance (FSD) if all
individuals having monotone increasing and continuous utility function (i.e. who prefer more

to less) prefer asset i to asset j. This relation will be denoted by r; =psp rj Or T Spsp T;-

Whereas, the second order stochastic dominance (SSD) of asset i over asset j is said to
be satisfied, which will be denoted by r; =ssp 1j or r; <ssp T3, if all risk averse individuals

having utility function (i.e. a concave one) in C(R) prefer asset i to asset j.

Note that an asset having rate of return r; is defined to be preferred to another asset of

rate of return r; with respect to a certain utility function U f EU(1+1;) > EU(1+7;). In
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other words, the investment of one unit of the currency provides larger expected utility with
asset 7 that with asset j. In case of stochastic dominance, however, the size of the capital
(to be invested) does not play any role since the definition requires a feature of the asset
to be valid for a whole class of utility functions. Therefore it is easy to see that defining
the individual’s preference of asset i to asset j for instance by E U(r;) > E U(r;) instead of
EU(1+7;)>EU(1+r;) would lead us the same notion of stochastic dominance (either of

type first order or of type second order).

5.1 First Order Stochastic Dominance

Here we give a theorem to describe the notion of FSD.

5.2 Theorem. Let us assume that {Q, F,P,r,n} is a securities market, i,j € {1,2,...,n},

such that P(r; < u) = P(r; < u) = 1 for some real number u.

Then

Ti =FSD T; iff  F(z) < Fj(z) for z€R,

where Fy, denotes the distribution function of i, k € {1,2,...,n}.

Proof. Define
G(z) = Fi(z) — Fj(2) for zeR,
and let U € C(R) be increasing. Then by the continuity of U the formula of integration by

parts (see Appendix, Theorem 8.3) yields

/ UL+2)dG)+ [ G)dU( +2)
[—1,u]

(1]
= U1 +uw)G(u) — U0)G(~1) =0,

since G(u) = G(—1) = 0. Hence r; =psp r;, that is

EU(1+Ti)—EU(1+Tj):/ U(l+ 2)dG(z) >0

[_l’u]
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holds for all monotone increasing U € C(R), if and only if
G(2)dU(1+2) <0
[_l’u]
holds for all monotone increasing U € C(R) which is equivalent to G(z) > 0 a.s. for z € R

and thus the proof is complete. 0

Now it is clear that an asset displays first order stochastic dominance over another
asset if the probability for the rate of return to exceed any level is not less in case of the first
asset than in case of the second one. Hence, it implies that an asset dominating another
one in the sense of FSD has at least as large expected rate of return than the one being

dominated.

But the reverse of this statement does not hold of course. Imagine for example asset
1 with a uniformly distributed rate of return over the interval [—0.5,0.5] and let the rate of
return of asset 2 be uniformly distributed on [—0.2,0.4]. By Theorem 5.2 it is trivial that
none of the assets displays stochastic dominance over the other one in the sense of FSD,

although their expected rates of return are not equal.

It can also be mentioned that reflexivity and transitivity are both satisfied by the
relation <pgp though this relation does not necessary provides a linear ordering on the set
of financial assets of a certain market, since some assets might not be comparable in this

way, as it has been shown in the last example for instance.

5.2 Second Order Stochastic Dominance

The second order stochastic dominance, similarly to the first order one, can be also described
by some basic properties of the distributions of the rates of returns, which makes it easy to
verify whether an arbitrary pair of financial assets are in the relation or not. The following

theorem provides the precise statement.
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5.3 Theorem. Let us assume that the conditions of Theorem 5.2 are valid and recall the

notations used in it.

Then
i =8SD T — Er,=Er; and S(x)<0 forall ze[-1,u],

where

Proof. Let U belong to C'(R). Note first that clearly S(—1) = 0 and

St= [ (R-F)eue=— [ dlFi-F)) =Er—Er.

Then recalling formula 38 and applying the formula of integration by parts again (see

Theorem 8.3 in Appendix) we find (with G(z) = F;(2) — Fj(2), z € R)

EU(L+r)—EU(L+r;) = / U+ 2)dG:) = — [ Ga)du( + 2)

[—1,u] [—1,u]

_ _/ G/ (1 + 2)d = _/ U'(1+ 2)dS(2)
[(—1u]

[_17“}

(39)
= —U'(1 +u)S(u) + U'(0)S(=1) + / S(2)dU'(1 + 2)

[_lvu]

:U’(l—ku)(Em—Erj)—l—/ S(z)dU' (1 + z).
[_]wu}

Necessity. 1f r; =gsp r; then the left-hand side of (39) is non-negative for each concave
utility function U in C'(R). The integral in the last line of (39), however, vanishes for linear
utility function. In particular, we have Er; —E r; > 0 with U(z) =z and Er; —E7; <0
with U(z) = —x which together imply the equality of the expected rates of return of the

underlying financial assets.

To show that the function S does not exceed zero over [—1,u] let us suppose that

there is a point in [—1, u| where S takes a positive value. The function S is defined to be
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continuous and hence there can be found an interval [a, b] C [—1, u] which S is positive over.

Now, taking for instance the function
U(ZL’) = 1(_0041) 2|a|x - 1[a,b] 2 — 1(b,oo) 2|b‘l’, Vr € R,
which is clearly a concave function in C*(R), leads us to

/ S +2) = [ S()dU(1 +2) < 0.
1]

[a,b]

This relation is a contradiction to (39) and therefore the necessity is proved.

Sufficiency. If U € C1(R) is concave then U’ is monotone decreasing. Therefore

/ S(z)dU' (14 2) > 0
[_l’u]

for such a utility function which together with (39) completes the proof. 0J

We have seen earlier that the class of individuals who prefer more to less is uniform in
the sense that all will prefer an asset, say 1, to another, say 2, if the first asset displays first

order stochastic dominance over the second one.

Another important class of individuals (or the corresponding class of utility functions)
has turned to be uniform in a similar sense by Theorem 5.3. Namely, if the first asset
dominates the second one this time in the sense of SSD then we can unambiguously say that

any risk averse individual prefer asset 1 to asset 2.

Note that reflexivity and transitivity hold also for the relation =gg5p but the linearity

is not satisfied either in this case.
5.4 Remark. It easily follows from Definition 5.1 and from Theorem 5.3 that the properties
Er,=Er, and Var r; < Varr, (40)

are involved in the relation r; <gsp 7, where 7; and r; are the rates of return of two financial

assets in a securities market. For this, choose the concave utility function U(z) = (x—pu—1)2,
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r € R, with p = E r; = E r; which immediately yields the above relation between the

variances.

Properties (40) make it clear why an asset is sometimes said to be more risky than
another one by some authors instead of saying that the latter one dominates the first asset

in the sense of SSD.

The two properties in (40), however, do not provide sufficient condition for the second
order stochastic dominance. Indeed, take for instance a securities market {Q, F P, r 2}
where the risky assets are defined as follows. Let r; be uniformly distributed on [—a, a] with

a € (0,1) whereas ry(w) € {—a,0,a} for each w € Q such that
P(rg=—a) =P(rs=a) =¢

and

1
P(T2:0)21—2€ with 0<5<6.

It is easy to see that Ery = E ro = 0 and Var r; > Var ry. On the other hand, there can
be found a right neighbourhood of —a (e.g. (—a, —a + 2ag)) where the distribution function

of 1o, say Fy, exceeds the distribution function of 71, say F;, which means that

S(y) = /[_1 )~ B >0

if y belongs to this neighbourhood. Hence, it follows from Theorem 5.3 that an asset with

rate of return r, cannot dominate an asset with rate of return r; in the sense of SSD.

5.3 Demand Versus Stochastic Dominance

Consider two risky financial assets such that asset 1 displays stochastic dominance over asset
2. If the dominance is first order type then all individuals who prefer more to less will prefer

any amount of money invested in asset one to the same amount invested in the second asset
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if these investments are made at the same time (namely, it was time point 0 in Section
4.3). Whereas in case of second order stochastic dominance risk averse people will prefer
an investment in the first asset to an investment in the second one if these investments are

worth the same at time 0.

One would guess naturally that the above assertions should imply a clear relation
between the demand of two different financial assets where one is stochastically dominating
the other one. One could expect, for instance, the dominant asset to have a larger demand

(for any level of wealth to be invested).

Such a relationship cannot be established in general. In the following we will present
examples contradicting the relation suggested above. We will see that studying securities
markets, where there is at least one more asset traded in the market besides the investigated
risky asset (e.g. one riskless is available for sure), the situation might be more complicated
than in the previous sections. However, one can find some additional necessary conditions

under what the relation at issue becomes valid, as we will show in Remark 5.6.

5.5 Example. Consider two one-risky-asset securities markets such that the riskless asset,
say bond, is the same in these markets. The bond’s interest rate is ro > 0. The second
(risky) assets of the markets, say stocks, are defined by their random rate of return, what

will be denoted by r; and 7y respectively. Define

1
]P)(’f’l :a) :]P)(Tl :bl) = 5
and
1
P(ro =a) =P(ry = by) = 3
where for ease of calculations we assume that
1
CL—T’OZ—E, by —rg=1 and by —rg=1—¢

with 0 < e < 9/11. It is trivial that first order stochastic dominance of stock 1 over stock 2

holds.
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Now consider the portfolio problem of the individual acting in both markets with initial
capital Xy (see Section 4.3). Let > 0 and suppose that the individual’s utility function U

belongs to C*(R) and satisfies
U'(g9(a)) =10 U'(g(b1)) and U'(g(b)) = (10— &) U’ (g(b1))
such that U’(g(b1)) > 0 where the function g is defined by
g(x) = Xo(1 4 ro) + Bz for xeR.

Note that g(a) < g(b2) < ¢(b1) and hence the above constraints made on U still allow
us to suppose that U is strictly concave and and monotone increasing. Moreover, either

lim, o U'(x) =0 or lim,_,_ U'(x) = co can be fulfilled, which will be assumed as well.

In the above set up Lemma 4.10 and Theorem 4.12 assures us the existence and unique-
ness of the optimal portfolio in both markets. Furthermore, checking the first order condi-

tions (27) we find

E U'(Xo(1+10) + B = 10)) (n = o) = 5| U"(9(a)) (@ = 7o) + U (9(b1)) (b1 = 0)| = 0

N | —

which means that 7 = (Xo — 3, 3) is the solution of the portfolio problem in market 1. In

market 2 we have

B U'(Xo(1 4 1) + 872 = 10)) (r2 = r0) = 5 [U"(9()) @ = o) + U (0(b) b2 = )

1
2

N %[U/(g(a))(“ —10) + U (g(b0)) (b1 = 70) ] + %U’(g(bl))(9 +e? —1le)

U (9(@)) (@ = o) + (10 = ) U/ (g(ba)) by = 70 — )]
(41)

90— 11
.

> Ul(Q(bl))

It follows now from (41) that the function
F(x) :EU(X0(1+7"0)+x(7‘2 —7’0)), r € R,

will achieve its maximum at a point §* larger than (3 (see the proof of Lemma 4.10).
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We have shown that there can be found a risk averse individual who prefers more to
less such that he will undertake more of stock 2 in case of acting in market 2 than of stock 1
in case of acting in market 1 in spite of the fact that stock 2 is dominated by stock 1 in the
sense of F'SD (which also implies that any amount of stock 1 would be preferred to stock 2

being worth the same since the utility function of the individual is monotone increasing).

5.6 Remark. Let us suppose again that we are given two one-risky-asset securities market
with the same bond representing the riskless asset in both markets and denote the interest
rate of this common bond by rq > 0. As in Example 5.5, we will use the notations r; and 79
to indicate the rates of returns of stock 1 (in market 1) and stock 2 (in market 2) respectively.

Let Ery > rg and E ro > 7.

We assume that stock 1 displays second order stochastic dominance over stock 2, in

other words, stock 2 is more risky than stock 1.

Now consider the portfolio choice problem in both markets with a strictly risk averse
individual having utility function U € C*(R) and possessing initial capital X,. Furthermore,
we assume that U has a form which provides the existence and uniqueness of the optimal

portfolio in both markets. (For this necessary conditions are given in Theorem 4.12.)

If (Xo— 0, 8) (where  must be positive) is the optimal portfolio in market 1 then from

the first order condition (27) we have
E U/(Xo(l —|—T0) —|—6(7’1 — 7’0))(7”1 — 7’0) = O

Define
f(@) =U'(Xo(1 +1o) + Bz —ro)) (z — 7o), x €R.

By Theorem 5.3 we can state the following about the demands of the stocks.

If function f, which is determined by the individual’s utility, is concave over the real

line then the second order stochastic dominance of stock 1 over stock 2 implies the fact that
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the individual will invest more money in the less risky risky asset (in the first market) than

in the more risky risky asset (in the second market).

So, we have found a relationship, indeed, between the stochastic dominance and the
demand for the risky asset what we were discussing at the beginning of this section. This
assertion, however, is hardly applicable since the concavity of the above f does not hold in

case of many commonly used types of utility functions.

5.7 Example. In the above remark we investigated what circumstances would lead the
individual to invest less in the more risky asset than in the less risky one. We also mentioned
that the conditions had been found sufficient are not always the case in practice. Therefore
now we demonstrate an example where the investigated relation of the demand and the

riskiness is reversed.

For this we keep the notations of Remark 5.6 and define the rates of returns of the

assets and give a particular utility function.

So, first suppose that
1
P(ri =ag) =P(ry =b) = 5

where ag = —0.5 + 19 and b = 1 4+ rg. The second risky asset is defined by

1
and  P(ro=0) ==

1
P(ro =a1) =P(ro = ag) = 1 5

with a; = —0.6 + g and ay = —0.4 4 rg.

We claim that stock 1 displays second order stochastic dominance over stock 2. To see

this one can find

1
ET1=7’0+Z=ET27 (42)
furthermore,
Sgn(S(x)) = sgn (/[ ] Fl(x) - FQ(‘T)dx) = 1(a1+r0,a2+ro)' (43)
—1,147r¢
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Then (42) and (43) together with Theorem 5.3 imply 1 =ggp 7o.

Let 8 > 0. Given capital Xy > 0 recall the definition of function ¢ from Example 5.5
and suppose that
0 < U (gla)) = 20" (g(1)
and
U'(g(ar)) =U'(g9(a0)) +¢,  U'(glaz)) =U'(g(b)) +¢
where 0 < & < U’(g(ao)) /5. We can suppose that this utility function is strictly concave and

monotone increasing satisfying either lim, ., U’'(z) = 0 or lim,_, o, U'(z) = co. We have
E U,(Xo(l + 7’0)“}‘6(7’1 — To)) (7’1 — To)
) ) (44)
= 5 U'(g(ao))(ao — 7"0) + 5 U'(g(b))(b — 7"0) =0

and

E U'(Xo(1+70) + B(ra — 10)) (r2 — 1o)

= i U'(g(ar)) (a1 — o) + i U'(g(a2))(az — ro) + % U'(g(b))(b— 7o)
- i <U’(g(a0)) + 5)(—0.6) + i (% U’(g(ao)) + 5) (—0.4) + % U'(g(b))(b —70)
_ U’(Q(ao)) X € ~0

(45)
Using the same argument as in Example 5.5 one can obtain from (44) and (45) that the
optimal portfolios in market 1 and market 2 are (X, — 3, 3) and (X, — 8%, 8*) respectively,
with 8 < (.

Thus we have shown that a risk averse individual who prefers more to less may invest
more in an asset than in another one even if the asset is more risky (in the sense of SSD)

than the other one.

In Examples 5.5 and 5.7 we considered two securities markets. Both markets are

equipped with two assets, a riskless bond and a risky stock such that the bonds of the
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markets are identical. Then we compared the stocks and established stochastic dominance
of one of the stocks over the other one. Inspite of this fact, however, we have seen that
some individuals would buy more of the more risky stock (the one which is worse in terms

of stochastic dominance) even if they are risk averse and they prefer more to less.

One can interpret this assertion in different ways. First, we could imagine two markets
in reality with such features and observe individuals who invest in both securities markets
(certainly choosing optimal portfolios in both). But in fact this is not very realistic. Or, one
can consider market 1 and market 2 as two different states of the same securities market at
different time points, say, at t; and ¢ty with t; < t5. Then our assertions show that the stock
of the market got more risky by time ¢, and then the individual restructured his portfolio
according to the changes. But these do not necessarily imply that he took capital out of stock
(by selling some of the stocks held by him) and bought bond for that capital. Moreover, he

may increase his investment portion of stocks.

Although we should like to note that this setup of the two markets is not equivalent
with a two-risky-asset securities market where all the three assets of the two markets are
available, that is: the bond is the same as before and also stock 1 and stock 2 are both
traded (on the same market). In that case the optimal portfolio would not contain more of

the more risky asset even if considering an individual with utility function like in Examples

5.5, 5.7.
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6 Risk measures

One of the main issues of modern finance is to develop tools and methods which enable us
to compare financial assets and especially portfolios, and to describe their riskiness. We
have seen in the previous chapters that several tools are provided by the different notions of
stochastic dominance for the comparison, and it is known that the classical capital market
models can also give a certain type of comparison of portfolios and a certain valuation of

their riskiness.

Beyond the above mentioned tools it is also a natural requirement that simple financial
indicators should describe the financial assets/portfolios and especially their riskiness. In
what follows we will call the indicators that describes the riskiness of the financial assets and
portfolios risk measures. Recall for instance the celebrated P/E indicator (price/earning),
which gives the investor some information on the asset. However, the classical financial
indicators (such as P/E) do not really give information on the riskiness of the financial

assets.

Several risk measures have been introduced in the literature. Among these risk mea-
sures it is undoubtable that the Value at Risk has become the most widespreadly used both
in practice and in theoretical works. According to many financial (and capital market)
regulations (law) the financial institutions and possibly other market actors are required
to calculate VaR and to fulfill other related operational requirements. We mention to the
interested reader that the Basel Committee on Banking Supervision has deeply considered
several problems related with risk measures and issued some standards that they recommend
(see e.g. International Convergence of Capital Measurement and Capital Standards). These
standards are commonly known as Basel I and Basel II, in which among others VaR and

related issues play a crucial role, they are recommended to the countries.

At this point we should also notice that we cannot state that the VaR is the most
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appropriate measure for the purpose we have discussed above, furthermore, in order to find
the most appropriate risk measure one first has to precisely fix his or her requirements that
such an indicator should fulfill. In Section 6.1 we study such possible features one would
require, whereas after this we consider the VaR and discuss its properties in Section 6.2.
Finally in Section 6.3 we study another risk measure, the so-called expected shortfall, which
has been suggested by many authors as an alternative of VaR because of the non-satisfactory

features of the VaR.

6.1 Coherent risk measures

As we have already mentioned one can propose several requirements that a risk measure
should satisfy. It is of course subjective, that is we cannot say that everyone would find the
same properties equally important. In the literature many different properties have been
proposed. Maybe the most commonly accepted properties in the literature are collected
in the notion of coherency, which we study in this section. We also study some possible

alternative properties as well.

The risk measures are defined on a set of random variables. Since given a financial
asset or portfolio the future value of its profit is described by a random variable. Similarly,
the value of the portfolio itself can also be described by the random variable of which the

risk is to be measured.

6.1 Definition. Let V be a set of random variables (describing the profit/value of the set

of the corresponding portfolios or financial assets) over a probability space (2, F,P).

A function ¢ : V — R is called risk measure.

A risk measure V' is said to be
(1) monotone, if for all X, Y € V and P(X <Y) =1 we have o(X) > o(Y);
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(2) subadditive, if for all X, Y, X +Y €V we have o(X +Y) < o(X) + o(Y);
(3) positive homogeneous, if for all h > 0, X, hX € V we have o(hX) = ho(X);

(4) translation invariant, if for alla € R, X, X +a € V we have o(X + a) = o(X) — a.

A risk measure is said to be coherent if it satisfies properties (1)-(4).

Assumption. For the sake of simplicity and convenience in this chapter we will assume that
V' is closed under addition, under multiplication by a positive scalar and under translation,
that is V+V,h-V.a+V CV forall h >0, a € R. We will assume, furthermore, that V'
contains the element X =0 (P(X =0) =1).

The properties of the risk measures (monotonicity, subadditivity, etc) will sometimes

be also referred to as axioms.

Considering the motivation behind the properties mentioned in the definition we can
interpret them as follows. If a portfolio promises more then another one in all situations
then it should not have larger risk then that of the other one (monotonicity). Merging
two portfolios should not increase the riskiness, i.e. we should not exceed the sum of the
risks of the separate portfolios (subadditivity). If we multiply the portfolio value but we
keep the relative proportions of the assets in it then the risk of the portfolio should change
proportionally to the value of it (positive homogeneity). If we will realise an additional fixed
(non-random) cash flow then the risk should be reduced by exactly the sum of the cash flow

(translation invariance).

It is important to mention that one could consider several other properties that could
also be reasonable from a financial point of view, they could possibly be similar to the
ones mentioned, on the other hand, one could doubt the necessity of any of the properties

contained by coherency. Next we mention two of the possible alternative properties.

6.2 Definition. A risk measure o : V — R is said to be
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(5) positive, if for all X € V, P(X > 0) =1 we have o(X) < 0;
(6) convex, if for all A € [0,1] and X, Y, AX + (1 = N\)Y € V we have p(AX + (1 - \)Y) <
Ao(X) + (1= A)o(Y).
6.3 Theorem. Let o be a risk measure.

(a) If o is positive homogeneous and X = 0 then o(X) = 0.
(b) If o is positive homogeneous and translation invariant then o(a) = —a for all a € R.

(¢c) If o is subadditive, positive homogeneous and translational invariant then —o(X) =

o(=X) forall X,—X € V.
(d) A risk measure is coherent if and only if it satisfies properties (2)-(5).

(e) If o 1s subadditive and positive homogeneous then it is convez.

Proof. (a) Let X = 0. We have X € V, thus the first statement is immediate due to

positive homogeneity, since o(X) = 0(2X) = 20(X).

(b) If a € R then the translation invariance and statement (a) together imply o(a) =

0(0+a) =0(0) —a=—a.

(c) Applying subadditivity we obtain 0 = o(0) < o(—X) + o(X). Let us suppose now
indirectly that o(—X) 4+ o(X) = b > 0. Then statement (b) and subadditivity together
imply o(b) = o(X +b—X) < o(X +b) 4+ o(—X) = o(X) — b+ o(—X) = 0, from which we

obtain that b = 0 which is clearly a contradiction.

(d) (1)-(4) = (2)-(5). If o is coherent then for a nonnegative random variable X
(P(X > 0) = 1) the first statement and the monotonicity imply that o(X) < o(0) = 0, and

hence the positivity is shown.

(2)-(5) = (1)-(4). Let X,Y € V such that P(X <Y) = 1. Let us assume indirectly

that o(Y) > o(X). Notice that by statement (c) and the positivity we have o(X —Y) =
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—o(Y — X) > 0. Furthermore, due to subadditivity 0 < o(X —Y) < o(X) 4 o(=Y) <

o(Y)+o(=Y), which contradicts to the fact that by statement (c) we have o(Y)+o(=Y") = 0.

(e) First applying subadditivity, next applying positive homogeneity one gets imme-

diately the statement. O

Statement (b) means that the risk of a cash flow that comes with probability one is
exactly the ’opposite’ of its value. This means, that an almost sure fixed loss has positive
risk and it is equal to the sum of the loss, whereas the risk of an investment that gives an
almost sure positive fixed profit has negative risk such that its absolute value is equal to
the profit. According to statement (d) we can see that monotonicity can be replaced in the
definition of coherency by positivity (such that we obtain an equivalent system of ’axioms’).
Finally we note that some authors propose a weaker set of axioms instead of coherency,
namely, they suggest that in the four axioms of coherency the subadditivity and positive

homogeneity should be replaced by the weaker axiom of convexity (see (e)).

In the past the riskiness of portfolios and financial assets were often described by the
aid of the standard deviation or the variance of its future value. It is important, however,
to note that the standard deviation or the variance are not appropriate for our purposes. It
is trivial that none of them is monotone, or for instance positivity is not satisfied by any of

them either.

6.2 Value at Risk

Notation. Given a random variable X we will denote its (left continuous) distribution
function by Fy, i.e. Fx(z) = P(X < z). The right continuous version of the distribution
function will be denoted by Fy, i.e. Fx(z) = P(X < z). We find it important to introduce
both versions here because several authors use Fy, many others Fy as the distribution

function of X. Therefore in the followings we will always emphasise the differences caused
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by the two different definitions of the distribution function.

6.4 Definition. Let X be a random variable and o € (0,1). Then the lower a-quantile of

X is defined by

Ga(X) = sup{y | Fx(y) < a},

where Fx is the distribution function of X, whereas

¢“(X) =inf{y | Fx(y) > o}

will be called the upper a-quantile of X.

Let X be a random variable which represents the (random) profit of an asset or a

portfolio on a probability space. Let o € (0,1). The lower a-Value at Risk of X is
VaR,(X) = —qo(X).
Similarly, the upper a-Value at Risk of X is defined as

VaR"(X) = —¢°(X).

The a-Value at Risk of X can be interpreted briefly as follows. It divides the possible
future values of the portfolio profit into two sets: in o100 % of the possible cases the profit
will be less than the VaR, and with probability (1 — «) we can say that the profit will be
at least as much as the VaR. In other words, the a-VaR gives the value of loss that will be
exceeded by the realised loss with probability (1 — «). That is, the a-VaR shows the best
of the worst a*100 % of the possible loss values, or to put in a different way, it shows the
worst case of the best (1 — «)*100 % of the possible scenarios. However, it is important to
emphasise that these decriptions are not rigorous statements. Furthermore, the upper VaR

and lower VaR do not necessarily coincide. We will discuss these issues later in details.

Next we summarise some useful properties of quantiles, and afterwards we consider the

consequent properties of VaR.
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6.5 Remark. It is easy to see that the quantiles can be written in other forms as well, since

Go(X) =inf{y | Fx(y) > a}, whereas ¢*(X)=sup{y| Fx(y) <a}.

Furthermore, we note that in Definition 6.4 or in the equivalent forms given above one
could replace the left continuous distribution function y — Fx(y) = P(X < y) by its right
continuous counterpart y — Fy(y) = P(X < y), the value of ¢,(X) and ¢*(X) would not

change.

We have ¢*(X) = —q1_o(—X) and ¢,(X) = —¢'7*(—X). These statements are im-
mediate taking into account the previous remark of ours, since considering for instance the

first case one obtains that
¢*(X)=inf{y | Fx(y) > o} =inf{y [P(-X < —y) <1—a}
=—sup{—y|P(—X < —y)<1l—a}=—sup {y | F_X(y) <1- a}

= _QI—a(_X)'

Since we clearly have that {y | Fx(y) > a} C {y| Fx(y) > a}, therefore taking the
infimum of these sets we have
¢a(X) < ¢*(X).
Based on this one can also observe that the lower and upper quantiles are not necessarily

equal, namely, by the monotonicity of the distribution function we get that
7a(X) = q¢*(X) < if the set {y € R | Fx(y) = a} has at most one element

(since by the monotonicity of the distribution function we can see that the sets {y | Fix(y) > a}
and {y | Fx(y) > a} forms intervals such that their right end-points are oo). It is also triv-
ial that the set {y € R | Fx(y) = a} has at most one element if and only if the set

{y € R| Fx(y) = a} has at most one element.

This means that if the distribution function is constant over an interval and this con-

stant value just equals « then the lower and upper quantile corresponding to this « are not
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the same. We cannot have such a situation in case of absolutely continuous distributions,
however, taking for instance a discrete distribution the lower and upper quantiles are differ-
ent for any a € (0,1) which is an element of the image F'x(R) of the distribution function.
One can also say that the two quantiles determine (as end points) the interval where the
distribution function takes the value «, more precisely: if ¢,(X) < ¢*(X) then

{.CE cER | Fx(x) _ O./} _ (QQ(X)vqa(X)], if P(X = qa(X)) >0

0a(X), q*(X)], if P(X = qu(X)) =0,

or to put it in a different way

(2 € R | Fx(a) = o} — 4 2@, HRX =7X)) >0

[4a(X), ¢*(X)], I P(X = ¢*(X)) = 0.

6.6 Theorem. Let U be a uniformly distributed random variable over the interval (0,1)
and X be an arbitrary random variable. Then 1, = qu(X), 12 = ¢V (X) and X are equal in

distribution (they have the same distribution).

Given a random variable X it is usual to define the generalised inverse of its distribution

function Fy by Fy' where

F);l(y> = Qy(X)v y e (071)7

which is clearly the inverse of the distribution function as long as the random variable is
absolutely continuous. Thus according to the theorem above the distribution function of

F{N(U) is Fx if U is uniformly distributed over the interval (0, 1).

The proof of Theorem 6.6. Since the U is absolutely continuous, 71 = ¢y(X) and
ny = qY(X) have the same distribution (because they only differ over a set of probability

zero). We will show that
Ay ={weQ|UWw)<Fx(y)} CBy={weQ|F(UW)) <y} (46)
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and

By CCy:={we|Uw) < Fx(y)} (47)

for all y € R. These imply the required statement, for this notice that U has absolutely
continuous distribution and Fx(y) = Fy(Fx(y)) = P(4,) = P(C,), furthermore we clearly
have F,, (y) = P(B,).

Let us turn to the proof of (46). Let w € A,, that is U(w) < Fx(y) and let H :=
{2| Fx(2) < U(w)}. Then Fy'(U(w)) = sup H and due to the left continuity of Fyx we
have Fy (Fx'(U(w))) < U(w) < Fx(y). If y = Fx'(U(w)) were valid then it would imply
Fx(y) < U(w). If y < F;'(U(w)) were valid then y € H would be satisfied, which would
lead us to Fx(y) < U(w). In other words, in case of y < Fyx'(U(w)) by the monotonicity of
Fx we would have Fy(y) < Fy (Fy'(U(w))) < U(w), therefore Fy'(U(w)) < y. Thus we
have shown (46).

Finally we turn to the proof of (47). Let us take now w € B, that is F'(U(w)) < y
and let H denote the same set as above. Then y ¢ H, therefore Fx(y) > U(w), hence we

obtain (47). O

6.7 Remark. We can, of course, use F 'y instead of F'x in order to prove Theorem 6.6. In

this case one can easily show the following implications:
A, = {w eN|Uw)< Fx(y)} C By ={weQ|Fy'(Uw)) <y} (48)

and

B,cC, = {w cQ|UW) < Fx(y)} (49)

for all y € R.

Now one can show (48) in a similar way as (47) has been shown. Consider an appropri-
ate formulation of Fii': let H := {z | Fx(2) > U(w)}, since in this case Fy'(U(w)) = inf H.

(
Furthermore, due to the right continuity of Fx we obtain F (F¢'(U(w))) > U(w). Let us
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suppose now that y < Fy'(U(w)). Then by y < inf H we have y ¢ H, thus we obtain

F(y) < U(w), which is a contradiction.

The implication (49) can be derived as (46) has been shown. To see this recall that
Fx is monotone and hence if y > Fx'(U(w)) then Fx(y) > Fx(Fx'(U(w))) > U(w).

6.8 Theorem. The lower VaR and the upper VaR are both monotone, positive homoge-
neous and translation invariant risk measures (over the set of all random variables of a

probability space).

The Value at Risk can be written in the forms VaR,(X) = ¢'~*(—X) and VaR*(X) =

G1—o(—X) as well.

Moreover, given a random variable X the functions o — VaR,(X) and o — VaR,(X)

(a € (0,1)) are monotone non-increasing.

Proof. We give the proof for the case of lower VaR, the statements can be similarly proved

for upper VaR.

Monotonicity. If P(X <Y') = 1then Fx(y) > Fy(y) for ally € R. Therefore {y | Fx(y) < a} C

{y | Fy(y) < a} that is
~VaRa(X) =sup {y | Fx(y) < a} <sup{y | Fy(y) < a} = —VaR.(Y).

Positive homogeneity. If h > 0 then F,x(y) = Fx(y/h), y € R, hence —VaR,(hX) =

sup {y | Frx(y) < a} =sup{y | Fx(y/h) <a} = hsup{z | Fx(z) < a} = —hVaR.(X).

Translation invariance. Given a € R we have Fx,,(y) = Fx(y —a), y € R, hence
—VaRa(X+a) = sup{y | Fxia(y) <o} =sup{y | Fx(y —a) < a} = atsup{z | Fx(z) <a} =
a—VaR,(X).

The equivalent forms of VaR follows from the properties discussed in Remark 6.5.
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Finally, if @ < g then {z | Fx(2) < a} C {z | Fx(z) < 8}, therefore ¢,(X) < ¢3(X),

which implies the monotonicity of VaR.

This proof would be almost literally the same if we had used the right continuous

version of the distribution function (F) instead of the left continuous one (F). O

6.9 Remark. In the proof of Theorem 6.8 we could see that the lower and upper quantiles
are both positive homogeneous, furthermore if P(X < Y') = 1 then ¢,(X) < ¢.(Y), ¢*(X) <

q“(Y), finally, for all a € R we have ¢,(X +a) = ¢.(X) + a, ¢*(X + a) = ¢*(X) + a.

So far we have shown that the VaR fulfills three requirements needed for the coherency
of a risk measure, it is only subadditivity that has not yet discussed. However, the VaR
is not subadditive in general and hence it is not a coherent risk measure either. One can

construct easy counterexamples to subaddtivity of VaR, we show such examples next.

6.10 Example. Consider a simple probability space, say, (2, F,P), where Q = {w, wa, w3, w4},
and let P(wy) = 0,01, P(we) = P(ws) = 0,03. Let X and Y show the profit of two portfolios

with
X(w) =-30, X(wg)=-20, X(wsz)=-5 X(ws) =20, (50)
Y(wi) = =30, Y(ws)=-5, Y(ws)=-20, Y(wy)=20. (51)
Then VaRy5(X) = VaR"(X) = VaRyp5(Y) = VaR»(X) = 5, on the other hand
P(X +Y = —60)=0,01, P(X+Y =-25)=0,06, P(X+Y =40)=0,93,

that is VCLR(),(){)(X + Y) = V(IRO’O5(X + Y) = 25.

The next example is given by Paul Embrechts.

6.11 Example. Let us suppose that the random variables Y; (i = 1,...,100) are indepen-

dent, identically distributed such that:
P(Y; =2)=0,99 and P(Y; =-100)=0,01.
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Consider a financial institution which grants credits, for instance the credit is of 100 thousand
dollars, granted for one year with (borrowing) rate 2%. Then Y; denotes the profit realised
by the institution from such a contract: with high probability the credit institution earns 2
thousand dollars, however there is a 1 % chance that the credit will not be payed back, for
instance due to the fact that the borrower goes bankrupt. (For the sake of simplicity we do
not consider present value calculations, which should have been done in case of cash flows

realised possibly at different time points.)

It is clear that VaRop5(Y;) = —2. Consider now the VaR of the portfolio L; that

100

consists of the 100 credit contracts mentioned above, i.e. let Ly = Y. 7} Y;. We can put the

1=
portfolio in a different form, namely,

100 100 100

Ly=>) Y;=) (102§ —100) = —100% + 102> &,
i=1 =1

i=1
where the random variables £ are appropriate independent, Bernoulli distributed variables
with parameter 0,99. In other words, Zjﬂ‘i & = n, where n has binomial distribution with
parameters (100; 0,99). Applying the translation invariance and the positive homogeneity
we obtain

VaRgos(L1) = 102VaR 05(n) + 1002,

Furthermore notice that

VaRoos5(n) = —qo,0s(n) > —100

since the largest possible value of 7 is 100.

Thus we conclude that

100 100
VaRy 05 (Z Y;) > " VaRps(Y7),

i=1 i=1

which means that subadditivity is not satisfied in our case.

This example is fairly surprising from several aspects, moreover, we can say that it is

rather frightening for the financial profession and financial institutions. One of the reasons
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is that in contrast to the previous counterexample now the subadditivity is disproved in a

case of independent and identically distributed portfolios/assets.

Another reason can be seen when we have a look at the result from a different perspec-
tive. Let Ly be a portfolio that contains only one credit contract with the same rate and
borrowing time as before (see Y7) but written on 10000 thousand dollars, i.e. Ly = 100Y;.
Since due to the positive homogeneity VaRy o5(L2) = 100V aR05(Y1), thus we can write our
results as

VQR0705 (Ll) > VaR0705 (Lg) .

That is, this example just states the opposite of our thoughts and beliefs we had about port-
folio diversification. The risk expressed in terms of VaR of the one-credit-contract portfolio
is smaller than that of the diversified portfolio where the same amount of credit is diversified
among independent clients given the same credit amount. And to top it all we note that
VaR, (Y1) = —2 whenever 0,01 < a < 1. Whereas in the same range the value of VaR,(L2)

is changing in a very sensitive way as the value of « is changing.

As we have seen above the VaR is not a coherent risk measure. Moreover, the prop-
erty which is not satisfied by VaR is the subadditivity, which would probably be the most
important property according to many experts. This means that calculating first the risks
of separate portfolios and then summing the risks one might get less than the risk of the
portfolio in which the separate portfolios have been merged. Though one would expect that
due to merging the portfolios a part of the risk would be eliminated or at least reduced. To
solve these problems other risk measures have been introduced and studied in the literature.
Among the alternative risk measures, the so-called expected shortfall has become the most

widely used and appreciated risk measure due to some of its nice features.
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6.3 The expected shortfall — An ’average’ of great losses

The expected shortfall is based on a simple idea: consider the worst o100 % of the possible
future outcomes of the portfolio, like in case of VaR. Now take the average of these outcomes
instead of just taking the upper bound of them (which is the best of them). That is, the
expected shortfall is to show the expectation of the profit (loss) of the worst a*100 % cases.

The rigorous definition can be formulated as follows.

6.12 Definition. Let X be a random variable such that E(X)~ < oo and let a € (0,1),

where (X)~ denotes the negative part of X*. The a-expected shortfall (value) of X is

1
ES,(X) = - (E [X1ix<gu)}] + (X)) [0 = P(X < ga(X))]) -
The following result helps us to derive and understand the features of the expected

shortfall, in fact it is an equivalent form of the notion at issue.

6.13 Theorem. Let X be a random variable with E(X)~ < oo and let a € (0,1). Then

BS,(X) = -+ /Oa (X )du = — > /Oa Fo'(u)du.

a a
Proof. Let U be a uniformly distributed random variable over the interval (0, 1) and define
n = Fx'(U). We have shown earlier that the distributions of X and U are the same. Having
in mind that the function Fi' is monotone increasing we can obtain the following simple
statements:

{U <a} C{n<q(X)},

4If x € R then the positive part of z is:

z ifz>0

0 otherwise.

The negative part of x is defined as ()~ = (—z)™.
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furthermore, U(w) > «, w € Q, (and hence n(w) > ¢.(X)) and n(w) < ¢.(X) can both be

fulfilled only if n(w) = ¢.(X). Based on these we obtain
[ =2
0

=E (M y<guxy) — E (1l {wsainin<aax)y)
=E (X1{x<gu(x}) — 4@a(X)P{U > a} N {n < q.(X)})

= E (X1{x<qux)}) = 4a(X) (P(X < go(X)) — ).

One gets the desired statement by dividing by —a. O

The results of Theorem 6.13 can be formulated with the use of upper quantiles. It is

casy to see that [ ¢, (X)du = [;"¢“(X)du, thus ES,(X) = —21 [*¢*(X)du. Similarly, one

o Jo
could replace the lower quantiles by the corresponding upper quantiles in Definition 6.12,
the replacement would not change the value of the expected shortfall. To see this first note
that the statement is trivial if ¢*(X) = ¢o(X). If ¢*(X) > ¢*(X) then P(X < ¢.(X)) = «
and we have
E [X1{x<pop] +¢%(X) [a = P(X < ¢%(X))]
=E [X1{x<g 03] + 4" (XOP(X = ¢*(X)) +¢*(X) [a = P(X < ¢a(X)) = P(X = ¢%(X))]

=B [X1x<qu0] = BSa(X).

Thus in contrast to the VaR we do not differentiate between a lower version of expected
shortfall and an upper version of it. Moreover, the expected shortfall can be written in some

other alternative forms as well, namely:
1
ES,(X) = - (E [X1{x<gux)}] + a(X) o — P(X < gu(X))]),

or

ESu(X) = — (B [X1xzy] + 5[0~ BX <)), s € 0a(X), ¢*(X)].
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6.14 Remark. Before turning to the most important properties of expected shortfall we
make some preparatory technical remarks. Let X be a random variable with E(X)~ < oo

and let a € (0,1). Let us introduce the following function for all y € R and w €

Lix sy} ifP(X =y)=0

a—P(X< .
Lixw<yy + 7]?()({:;)!/) Lix(@)=y}, HP(X =y)>0.

() _
LX<y =

Next we summarise some simple properties of this function. If X (w) > y then 1%()(@ <y = 0,
if X(w) < y then 1&)(@3/} = 1. Furthermore, for X(w) = ¢(X) if P(X = y) > 0 then

0<P(X <qu(X)) —a<P(X = ¢, (X)). Due to the assertions just mentioned we have

(a)
1 X <gun € 10,1]. (52)

One can directly see from the definition the following:

(@) _
Bk <qaixy = (53)

- (o)
ESa(X) = —a'EX1 Y, xy)- (54)

6.15 Theorem. Consider V = {Xrandom variable | E(X)~ < oo} on a probability space.

Then the expected shortfall is coherent on the set V.

Proof. The properties of the quantiles given in Remark 6.9 together with Theorem 6.13
imply that the expected shortfall is monotone, positive homogeneous and translation invari-

ant.

Thus it remains to prove the subadditivity. Let X and Y be random variables with

E(X)” <o0, E(Y)” < o0, and write Z = X + Y. Then by (52) we have

(X = 4a(X)) 1z ~ Lizairy) = 0 (55)

74



Since for X(w) > ¢o(X) one gets 1(i§(w)§qa(x)} = 0 and for X(w) < ¢.(X) one gets

1&)(‘0) (X)) T 1. Furthermore

a[ESy(X) + ES,(Y) — ES.(Z)]

(@) (@) (@)
E (Z Lz<anzy ~ X LxX<quxn ~ Yl{ysw)})

(@) (@) (@) (@)
E (X [1{23.:&(2)} - 1{nga(x>}} tY [1{Zs«za(2>} - 1{Y§qa<Y>}D
_ (@) (@) (@) (@)
= <[X ~ 4a(X)] [1{25%(2)} - 1{X5qa(x>}} Y — qa(Y)] [1{2%(2)} - 1{Y3qa<y>}D

(o) (@) ()
+E (qa(X ) [1{2%(2)} - l{XSqa(X)}] +da(Y) [1{23%(2)} - {Y%(Y)}D

() (@) (o) (o)
> ¢a(X)E [l{qua(Z)} - 1{nga(x>}} +4a(Y)E [1{zs%<z>} - 1{Y§qa(Y>}]

= qa(X)(@ = ) + ¢a(Y) (o — @) = 0,

where the first equality is due to (54), the inequality is due to (55), whereas (53) has been

applied to obtain the last line. O
6.16 Theorem. If X is a random variable with E(X )~ < oo then the function
a— ES,(X), ae(0,1)

is continuous and monotone decreasing.

Proof. Recalling Theorem 6.13 we can see that the expected shortfall is a continuous

function of the confidence level a. Since —g,(X) is non-increasing in «, hence

«

is also non-increasing, which implies that the expected shortfall is monotone decreasing in
a. To see this in more details let 0 < a; < ap < 1. Due to the monotonicity of the quantile

there exists an m € R such that fff —qu(X) du = m(ag —ay) and m < —q,,(X). Hence
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we also have m < ES,, (X). Thus

ESuy(X) = — / (X)) dut - / ~qu(X) du
0 o

(6] (0%)] 1
= M ES, (X) + (1 - ﬂ) m < BS,, (X)
Q2 Qo
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7 Bibliographic Notes

As we have seen utility theory forms the base of our set up and we were especially focused
on the Neumann-Morgenstern type of utility functions and related topics. For this we have
found the papers [Berde & Petr6] and [Esé & Loérand] fairly useful. They provide a very
good overview on the issue. Introduction to utility theory can be found in many books
on microeconomics and related areas, like in [Nordhaus & Samuelson] or [Kreps|. To find
further references and more about recent research we refer again to [Berde & Petrd] and

[Es6 & Lérand] who also supply a large list of references.

There are many publications and mainly textbooks available on portfolio management
which discuss the problem of portfolio selection. For our purposes we have used [Ingersoll]
and [Huang & Litzenberger| the most though we also mention that the mathematics in these
books is not found sufficiently precise for our aims. For readers with main interest in eco-
nomics [Elton & Gruber| can help the better understanding on portfolio problems whereas
[Hull] provides a great overview on (derivative) securities and related practical problems.
We also mention the excellent work of [Duffie] where not only portfolio problems but mainly

pricing problems and related topics in securities market are studied.

During the development of Chapter 6 the following works were used fruitfully: [Acerbi],
[Acerbi2], where we found a detailed discussion of the VaR and expected shortfall; [Delbaen],
where coherency of measures is studied in details; [Dowd|, where a great overview of the
VaR, its usage in economics and the discussion of its estimation can be found. Concern-
ing quantiles and its properties [Acerbi2] and [Major| provided excellent help for us. Fi-
nally we mention the useful works (papers, slides, etc) of Paul Embrechts where one can
find the discussion of many practical and theoretical issues concerning risk measures (see

http://www.math.ethz.ch/ embrechts/).

For better understanding on the means of classical mathematical calculus used in this

7



work we refer to [Lang] which provides a good exposition like many others. The work
[Rockafellar] gives a detailed discussion on convex analysis. We also mention the excellent

book of [Cohn] to those who are interested in measure theory.
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8 Appendix

The following two theorems are fundamental and well-known in classical calculus. They
together with their proofs can certainly be found in many (introductory) books on mathe-

matical analysis.

8.1 Theorem. (The method of Lagrangian multipliers) Let U be an open set in RP

(p € N*) and suppose that f,gi,..., g, € CH(U). Define
S={zxeU|g(z)=0, i=1,...,k}.

If c € S is a point where f achieves a local maximum then the gradient vectors

7 91(0) o 9 (c) aer /()

Vi(c) = . s Vok(e) = . Ve =

- 91(0) a9k (©) o f(c)

are linearly dependent.

Note furthermore that using Theorem 8.1 one can show the existence of constants
A1, ..., Ag such that
V() = v gi(e) + .+ X V gr(c).
Hence, the locations of the local maximums of f can be found as the solutions of the following

system of equations:

a k
oz, (f($>+;%9j(x)> =0, i=1,...p,

k
a% (f(@Jf;Ajgj(x)) =0, t=1,... .k
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8.2 Theorem. (The implicit function theorem) Let U C RP™? be an open set, p,q €
N* U {o0}, and assume that f € C"(U — RY). Define S = {x € U | f(z) = 0}. Let us

suppose that a € S such that

3;;1 h (a) 3ri+2 h (a) T 350(3+q h (a)

det ) . #0.

g fla) g2 fo(a) o g2 f(a)

Then there is a neighbourhood Uy C RP*Y of point a and there is a function g defined on an

open set W C RP such that g € C"(W — RY) and
SNUy = {(w,g(w)) ‘ w e W}

Furthermore, ay € W, g(a;) = ayr, where a = (a1,...,a0p4+q), ar = (a1,...,ap), a;p =

(pi1, .-, apyq) and f(w, g(w)) =0 for all w € W.

Next we give some useful versions of the formula of integration by parts. The proof

can be found in several books on measure theory. We refer to Chapter 5 of [Cohn].

8.3 Theorem. (Integration by parts) Let F' and G be monotone increasing, left continu-
ous, bounded, real valued functions on the real line with lim,_, ., F(z) = lim,_,_., G(x) = 0.
Let a,b € R, a < 0.

Then
G(z)dF(z) + / F(z+)dG(z) = F(b+)G(b+) — F(a)G(a), (56)

[a,b] [a,b]

where F(x+) and G(z+) denotes the right limit of F' and G at x respectively.
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From (56) one can obtain another form, namely

/ G(z) +G(:c+)dF(x) +/ F(x) +F(x+)dg(m) = F(b+)G(b+) — F(a)G(a).
[a,b] [a,b]

2 2

Note also that if F and G have no common point of discontinuity then we can simplify the

above formula and write

G)dF(z) + / F(2)dG(z) = F(b+)G(b+) — F(a)G(a).

(a,b] (a,b]
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