
HAL Id: hal-00388290
https://hal.science/hal-00388290v1

Submitted on 1 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Frequency map analysis of the 3/1 resonance between
planets b and c in the 55 Cancri system

F. Marzari, H. Scholl, P. Tricarico

To cite this version:
F. Marzari, H. Scholl, P. Tricarico. Frequency map analysis of the 3/1 resonance between planets b and
c in the 55 Cancri system. Astronomy and Astrophysics - A&A, 2005, 442, pp.359-364. �10.1051/0004-
6361:20053164�. �hal-00388290�

https://hal.science/hal-00388290v1
https://hal.archives-ouvertes.fr


A&A 442, 359–364 (2005)
DOI: 10.1051/0004-6361:20053164
c© ESO 2005

Astronomy
&

Astrophysics

Frequency map analysis of the 3/1 resonance
between planets b and c in the 55 Cancri system

F. Marzari1, H. Scholl2, and P. Tricarico3

1 Dipartimento di Fisica, University of Padova, Via Marzolo 8, 35131 Padova, Italy
e-mail: marzari@pd.infn.it

2 Observatoire de la Côte d’Azur, BP 4229, 06304 Nice Cedex 4, France
e-mail: scholl@obs-nice.fr

3 Department of Physics, Washington State University, PO Box 642814, Pullman, WA, 99164-2814, USA
e-mail: tricaric@wsu.edu

Received 31 March 2005 / Accepted 3 July 2005

ABSTRACT

We investigate the dynamical stability of the 3/1 resonant planets b and c in the extrasolar planetary system around 55 Cancri by applying
Laskar’s frequency map analysis. We find that the region with low diffusion speed extends to high eccentricity for both planets and that the
observed system is deeply embedded in this region. The dynamics while in resonance and the influence of planet e on the resonant couple are
also analysed. Using a simple model for the capture of the planets in resonance during migration we show that evolutionary tracks from smaller
to the presently observed eccentricities lie in the stable region.

Key words. celestial mechanics – planetary systems – methods: N-body simulations

1. Introduction

The extrasolar planetary system around the main-sequence star
55 Cancri (= ρ1 Cancri) is presently the most crowded known
system with four planets. Three planets reside in a compar-
atively small region between 0.038 and 0.24 AU. The fourth
planet is further out at 5.26 AU. The masses of the four planets
range from Neptune-like to Jupiter-like masses and their orbital
eccentricities range from almost zero to 0.44 (McArthur et al.
2004). The central star is a G8V main sequence star with a high
metallicity ([Fe/H] = 0.27, McArthur et al. 2004) and an esti-
mated age of about 5 Gyr. The inner planet, 55 Cnc e, is the
least massive known extra-solar planet orbiting a Sun-like star
with a mass comparable to that of Neptune. This planet at 0.038
AU is not yet fully confirmed and doubts about its location have
been raised by Wisdom (2005) very recently, who suggets that
this planet has a much larger semimajor axis of nearly 0.8 AU
and a mass of about 1.8 Neptune masses.

The large eccentricities of the planetary orbits, their vicin-
ity to the central star and the age of the central star suggest
that the planetary system has dynamically evolved. It can-
not be excluded that the orbits of the innermost planets are
still evolving due to tidal interactions with the central star.
The second and third planet, termed planets b and c, respec-
tively, are known to be locked in a 3/1 mean motion resonance
(Zhou et al. 2004; Ji et al. 2003). Their respective semimajor
axes are 0.115 and 0.240 AU corresponding to orbital periods

of about 14.67 and 43.93 days. The eccentricity of planet b
oscillates between almost zero and 0.22 while it oscillates be-
tween 0.25 and 0.44 for planet c. Possible close encounters
between the two planets due to these eccentricity oscillations
are avoided by the 3/1 resonance locking which is essential for
the stability of the system. When moving one of the planets
slightly out of the resonance, while keeping their observed ec-
centricities, close approaches would occur within timescales of
∼104 years according to our results. A “Jumping Jupiter” phase
(Weidenschilling & Marzari 1996; Rasio & Ford 1996) would
start: The planets have their orbits frequently altered by close
encounters until a planet is ejected from the system. Since the
inner planets are so close to the central star, a planet may also
fall into the star before ejection. However, the system may be
stable for lower eccentricities, in particular for planet c. We
found stability for eccentricities smaller than 0.25.

It is, therefore, plausible to assume that at least one of
the planets, either b or c, migrated and entered the 3/1 res-
onance. It is well known that two bodies on converging
orbits can be captured in a mean motion resonance (e.g.
Murray & Dermott 1999). The masses of the two planets, their
orbital eccentricities and their migration velocities are the
three main parameters for capture. The 2/1 and 3/1 reso-
nances are known to be the most efficient ones for cap-
ture (Murray & Dermott 1999). If, after capture, the dynami-
cal system changes adiabatically, both planets remain locked
in the resonance, increasing their orbital eccentricities during
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migration. The mass ratio between the two planets determines
the outcome. Usually, the more massive planet right after res-
onance capture has a slower eccentricity growth. Planet c, the
less massive planet, has a higher eccentricity, which supports
the capture hypothesis. After an initial phase of eccentricity in-
crease, eccentricities may evolve in different ways depending
on the underlying migration scenario, on the mass ratio of the
two resonant planets and on the behaviour of angular variables
which are relevant for resonant motion. The eccentricity of one
of the planets may decrease while the eccentricity of the other
planet continues to increase. If the driving mechanism for mi-
gration does not disappear, one of the planets is removed ei-
ther by ejection on a hyperbolic orbit, by falling in the central
star or even due to a close encounter among the two planets
(e.g. Moorhead & Adams 2005). If the origin of the resonant
planets b and c is due to migration, it is plausible to assume
that the driving mechanism disappeared leaving the two plan-
ets on their present orbits. Such a scenario was proposed to ex-
plain the resonant planetary system GJ 876 (Lee & Peale 2002;
Kley et al. 2005).

Three major mechanisms are known to cause orbital plane-
tary migration: planet-disk interaction (Goldreich & Tremaine
1980; Lin & Papaloizou 1986; Ward 1997; Tanaka et al. 2002;
Kley 2003), tidal interaction between planet and central star
(e.g. Rasio et al. 1996), and close encounters of a planet with
planetesimals (Malhotra 1993; Murray et al. 1998). The first
mechanism is the most obvious of the three to lead to reso-
nance capture since it may result in an inward migration of
a planet driven towards another planet as investigated, for in-
stance, by Kley (2003). He showed for the 55 CnC system, by
fully viscous hydrodynamical simulations and by N-body sim-
ulations, how an outside disk drives planet c towards planet b
with a subsequent capture in the 3/1 resonance. He also mod-
eled the capture of planets in a 2/1 resonance in the HD 82943
and GJ 876 systems. For the latter system, Lee & Peale (2002)
investigated migration and resonance capture driven by disk-
planet interaction using N-body simulations. Their model also
includes possible eccentricity damping due to the action of the
disk on the planets.

Resonance capture due to tidal interactions between plan-
ets and a central star is not so obvious. One would expect that
the closer the planet is to the star the faster it migrates in-
wards, producing diverging orbits. If migration is driven by
tidal forces, the two planets locked in resonance either origi-
nated very close to the resonance or were captured in resonance
due to a different mechanism. The orbital evolution of migrat-
ing bodies in resonance driven by tidal forces in the frame of
the Darwin-Mignard model was, for instance, investigated by
Ferraz-Mello et al. (2003).

The third migration mechanism based on planetesimal scat-
tering may result in converging planetary orbits. However,
since in this case migration is driven by stochastic kicks of the
semimajor axes, planets may be easily moved out of resonance
locking.

Two conditions must be fulfilled for resonance capture of
planets b and c independently of the underlying migration
mechanism: Firstly, before capture, the orbital eccentricities of
both planets b and c must be smaller than the present ones and,

secondly, their orbits must converge. Since only after capture
do their eccentricities increase to reach their present values,
the dynamical system must evolve adiabatically. Therefore, it
is important to know for this scenario whether or not there is a
path in phase space from small to large planetary eccentricities
embedded in a stable region.

In order to test the hypothesis that the present system is
a result of migration and resonance capture, it is necessary to
demonstrate the long–term stability of the present system and
the stability of the system during migration while locked in the
3/1 resonance. In the present paper we concentrate on the long
term stability and show for a few migrating systems that their
evolutionary tracks reside in the most stable region. A further
more detailed paper is devoted to capture and migration.

We apply Laskar’s Frequency Map Analysis (hereinafter
FMA) in the framework of a purely gravitational model which
allows a fast exploration of the stability of a large number of
orbits with very different starting values. This method deter-
mines the main frequencies of the system and computes their
diffusion rates. Orbits with low diffusion rates are the most sta-
ble ones while those with fast diffusion rates are chaotic. The
major advantage of the FMA is the comparatively short times-
pan of numerical orbital integration required to determine the
stability properties of the system. Moreover, by computing the
basic frequencies and amplitudes of the angular elements of
the planets, the FMA gives additional information about the
free eccentricities of the planets as well as about libration and
circulation periods of relevant angular variables. This allows a
rich statistical exploration of phase space without an excessive
computational effort.

2. The numerical algorithms

2.1. Orbit integration

A total of about 10 000 systems with different values for orbital
parameters of planets b and c are integrated numerically in the
framework of a 5-Body problem including the central star and
the four known planets, and a 4-Body problem in which planet
e is not considered. Using the symplectic integrator SYMBA
(Duncan et al. 1998) we cover a period of 105 yr. This time in-
terval is long enough to measure with the FMA the most im-
portant secular frequencies of both planets b and c. A short
timestep of 0.05 days is adopted in the numerical integration
in order to account for the short orbital periods of the plan-
ets and for their high eccentricities. The initial semimajor axes,
eccentricities and orbital angles of planet b and c are randomly
sampled around their nominal values as given in Table 3 of
McArthur et al. (2004). The authors provide different planetary
masses, derived from radial velocity solely and also from as-
trometry. We have tried both mass sets without finding any sig-
nificant difference in our main results concerning the size and
shape of the most stable regions. All the orbits of the planets
are assumed to be coplanar.

We retain only those simulations where at least one
of the following two classical resonant arguments (e.g.
Zhou et al. 2004) θ1 = λb − 3λc + 2�b, θ2 = λb − 3λc + 2�c

librates over the whole timespan. The third resonant argument
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θ3 = λb − 3λc + �b + �c is not independent as it is a lin-
ear combination of the two other arguments. θ3 = (θ1 + θ2)/2
(Murray & Dermott 1999).

2.2. The FMA method

The FMA technique (Laskar et al. 1992; Laskar 1993a,b;
Sidlichovský & Nesvorný 1997) is based on a refined Fourier
analysis of the angular variables of a dynamical system.
The variation with time of the fundamental frequencies gives
a measure of the diffusion of the trajectories in the phase
space. It provides a complete dynamical map of the sta-
bility properties of a system and it also illustrates the
global dynamics of the system. The FMA has been previ-
ously applied to study dynamical stability of minor bodies
in the solar system (Nesvorný & Ferraz-Mello 1997; Melita
& Brunini 2001; Marzari et al. 2002; Marzari et al. 2003a,b)
and extrasolar planetary systems (for ν–Andromedae see
Robutel & Laskar 2001).

We analyse the following variables:

sb = hb + i kb (1)

sc = hc + i kc (2)

s∆� = cos (�b −�c) + i sin (�b −�c) (3)

sl = cos (θn) + i sin (θn). (4)

The non-singular variables h and k are defined by

h = e cos (�) (5)

k = e sin (�) (6)

where � designates longitude of perihelion. Indices b and c
refer to the two planets. θn is one of the librating resonance ar-
guments, either θ1 or θ2. When both arguments librate, which
happens in 73% of our fictitious systems, the one with the lower
libration amplitude is taken. In 96% of cases θ1 is either the
only librating argument or it has the smaller libration ampli-
tude. As a consequence, in most of our simulations θ1 is θn. By
extending the Fourier analysis of the signals sb and sc over the
whole timespan of the integration (105 yr), we can compute free
frequencies gb and gc for the two planets. The spectral decom-
position of both sb and sc show in fact a well defined dominat-
ing frequency that we term gb for planet b and gc for planet c,
respectively. The two frequencies, that in all simulations have
a period lower than ∼5 × 104 yr, can be roughly computed by
hand from the time evolution of ω̃, the longitude of perihelion.
When the two planets are in apsidal resonance gb = gc. We also
define free eccentricity e f

b of planet b (the same for planet c)
the amplitude of the signal sb at the frequency gb. It is the main
Fourier component of the osculating eccentricity e = Mod(s).
The major advantage of using e f

b and e f
c instead of the osculat-

ing eccentricities to label each planetary system in our simula-
tions is the fact that a system is uniquely determined by e f

b , e f
c ,

and an additional action variable as the libration amplitude that
will be defined below. The osculating eccentricities, even with
the addition of a third variable, do not allow a unique definition

of the system. The spectral analysis of sl yields the libration
frequency fl.

An average libration amplitude D and the related center of
libration θM of the nominal critical argument of the 3/1 reso-
nance is estimated as the mean of the maximum libration am-
plitude over short sub-windows (∆t = 1 × 104 yr) of the whole
integration timespan. Similarly, we compute the libration am-
plitude of the apsidal resonance D∆� over a sub-window of
∆t = 5× 104 yr. The choice of the sub-windows is made after a
detailed analysis of the libration period of the two resonances
in our simulations.

The diffusion speed of the resonant system in phase space is
measured as the negative logarithm of the standard deviation σ
of s∆� on running windows of 5000 years over the entire inte-
gration timespan. The circulation or libration period of s∆� is
less than 1000 years. Thus, the running window is long enough
for a precise computation of the frequency. Why do we mea-
sure the diffusion speed of the signal s∆� and not the one of
the more conventional signals sb or sc? The reason is that both
sb and sc might oscillate on a short timescale with small am-
plitudes for those systems where the planets are not only in the
3/1 mean motion resonance but also in apsidal resonance. As a
consequence, both sb and sc may not be good indicators of the
diffusion speed of the dynamical system since their variation
may be related to the resonance and not to chaotic diffusion.

After the FMA analysis, each orbit is characterized by the
values of e f

b , e f
c , D, fl, λm, D∆�, σ.

3. Analysing the resonance

3.1. Diffusion maps

The FMA measures the diffusion rate of a resonant system in
phase space. The corresponding variables are the free eccen-
tricities of the two planets and the libration amplitude of ei-
ther θ1 or θ2 as outlined above. In Fig. 1 we illustrate diffusion
portraits of the resonance in the space [e f

b , e f
c ] for systems with

(upper plot) and without planet e (lower plot). Indices b and c
refer to planets b and c, respectively. Different gray levels rep-
resent values of the diffusion speed σ ranging from 1 to 3 (see
the scale to the right of the figure). Light gray shading corre-
sponds to large values of σ (>3) and to a low diffusion rate. It
implies high stability and longest dynamical lifetime. The dark
regions have small values of σ (around 1), a fast diffusion rate,
and the orbits in these regions are highly chaotic. The nominal
system is marked by a circle. It is situated deeply in the most
stable region that extends in particular to the lower left corner
which corresponds to small eccentricities of both planets. For
free eccentricities of almost zero for both planets, the stable re-
gion is very small and the allowed range for resonant motion
is e f

b < 0.05 and e f
c < 0.1. This restricts the free eccentrici-

ties of both planets at capture. Moreover, the two planets must
have comparable eccentricities, otherwise resonant motion is
not possible. The path towards larger eccentricities is defini-
tively quite narrow.

The influence of planet e on the stability of the resonance
can be seen by comparing the upper map in Fig. 1 with the
lower map obtained for a dynamical system including only
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Fig. 1. Diffusion maps showing the stability properties of the reso-
nance in the [ef

b , e
f
c ] plane. In the upper plot planet e is included in the

system while in the lower plot only planets b,c and a are considered.
Different gray levels represent values of σ ranging from 1 to 3. Filled
circles mark the systems that are in apsidal libration. The empty circle
represents the nominal planetary system.

planets b, c, and a. In the case with all four planets, the stabil-
ity region has approximately a triangular shape. The resonance
locking appears to be more sensitive to the values of free eccen-
tricity of planet b. In fact, systems with values of e f

b larger than
∼0.35 are chaotic and become quickly unstable. Any value of
the outer planet’s free eccentricity appears to be permitted up
to 0.6. This cut for large eccentricities of planet b is due to the
presence of planet e. In the lower plot of Fig. 1 the stable re-
gion extends even to high values of e f

b . This is not unexpected
since planet e is rather close to planet b and it has a maximum
eccentricity of about 0.22. Once out of the resonance, large ec-
centricities lead rapidly to close encounters between planets b
and c.

The small dots in the diffusion maps mark those systems
where apsidal libration occurs simultaneously with the 3/1
mean motion resonance. Apsidal libration is not a necessary
condition for stability. Apsidal libration occurs preferentially at
smaller free eccentricities of planet b. This means that at cap-
ture, the apsides of the two planets are almost aligned. After
capture, and after the initial phase of eccentricity increase, the
original libration may switch to circulation without destabiliz-
ing the 3/1 resonance, or it may be preserved.
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Fig. 2. Diffusion maps in the [ef
b ,D] plane. As in Fig. 1, the upper plot

is for dynamical systems with planet e included while the lower plot
does not include planet e. Symbols are as in Fig. 1.

Figure 2 illustrates the diffusion maps in the (D, e f
b ) space,

where D is the amplitude of the resonant argument θn. It shows
clearly two stable regions, one with libration amplitudes lower
than ∼130◦, and a smaller one roughly encompassed between
200◦ < D < 310◦. It is interesting to note that for very small
eccentricities near zero of planet c, only librators with large
amplitudes can occur. When planet e is taken away from the
system (Fig. 2, lower plot) the stable region is more extended
and additional non-chaotic orbits appear at large libration am-
plitudes and large eccentricities of planet b. The sharp cut in the
libration amplitude is not an artifact of our numerical scheme,
but we do not have a simple explanation for it.

3.2. Resonance dynamics

The application of the FMA method yields important clues on
dynamical features of the 3/1 planetary resonance, in partic-
ular of the resonance arguments θn. As shown in Fig. 3, the
libration center of the resonance strongly depends on the li-
bration amplitude D. For large libration amplitudes there is a
single libration center located at 180◦. As D decreases, a bifur-
cation point is met at D ∼ 180◦ and the libration center splits in
two branches approaching 60◦ and 300◦, respectively. In Fig. 4
we illustrate two extreme cases of this behaviour. In the up-
per plot the critical argument librates around ∼65◦ with an
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Fig. 3. Center of libration θM as a function of the corresponding libra-
tion amplitude D of the critical angle of the 3/1 resonance.
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Fig. 4. Evolution with time of the critical angle of the 3/1 resonance
for two different cases in our sample.

approximate libration amplitude of 22◦. The bottom plot shows
the behaviour before the bifurcation point where the libration
occurs around 180◦. Note that in the top case the libration pe-
riod is well defined and it is close to 140 yr. In the bottom case
the critical angle evolution is determined by two frequencies,
one very short with a period of about 4 yr and a second one
around 160 yr. The longer period is very close to the circula-
tion (or libration in case of apsidal resonance) period of ∆�.

Combining Figs. 3 and 2, we can predict the behaviour
of the libration argument when the planets are captured at
small eccentricities in the resonance. In the beginning, the res-
onance argument librates around 180◦ with very large ampli-
tude. While eccentricities increase and the bifurcation point in
Fig. 3 is reached, the libration center may switch to the upper
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Fig. 5. Migration tracks for planets b and c prior (dashed line) and
after (solid line) capture in resonance. The tracks are superimposed
on the diffusion map of Figs. 1 and 2, lower plots.

or lower part in Fig. 3 with smaller libration amplitudes. With
increasing eccentricities, the libration amplitude decreases.

In Fig. 5 we superimpose three typical paths of migrating
planets onto the diffusion maps of Figs. 1 and 2, upper plot.
The region around the nominal system is expanded. There are
no significant differences in the two diffusion maps of Fig. 1 for
the values of e f

b and e f
b considered, so we took the upper plot

where planet e is included. For the diffusion map in the (D, e f
b )

space, the case where the inner planet is included (Fig. 2 upper
plot) has a less extended stability area. The choice of this map
can be considered an extreme case.

In these examples of planetary migration, the inward drift
of planet c is artificially induced by imposing a drag force
Fdrag = −Mc u/tdrag, where Mc denotes the mass of planet c, u
its velocity vector. tdrag is the timescale over which the semima-
jor axis of planet c decays. No drag force is applied to planet b.
This drag force was used by Chiang (2003) to model the action
of a viscous disk on a planet. Migration starts outside the reso-
nance with eccentricities lower than 0.1. The migration tracks
in the figure have timescales of the order of 1 Myr. Dashed lines
correspond to the period before capture. Once trapped (solid
line), eccentricities are pumped up. Depending on the initial
conditions outside the resonance, different evolutionary tracks
are obtained. For each planet, we compute approximate values
of free eccentricities over short time intervals.
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All migration tracks lie within the stable region that sup-
ports the scenario where the present eccentricities are due to
migration while locked in resonance. After capture, the reso-
nance critical argument librates around 180◦ with a large am-
plitude. While the eccentricity increases, initially the libration
amplitude is reduced until the bifurcation point shown in Fig. 3
is reached. As the amplitude continues to decrease, the libration
center falls in either of the two branches illustrated in Fig. 3.
The three migration tracks end up very close to the nominal
system (the circle in Fig. 5) both in free eccentricities and li-
bration amplitude. All the systems after the migration phase lie
on the upper branch of Fig. 3 as the nominal system.

As outlined in the introduction, eccentricities of migrating
planets may, after a first increasing phase, decrease. For the par-
ticular mass ratio of planets b and c and the underlying type II
migration scenario, the eccentricity of planet c increases reach-
ing at least a value of 0.5. The eccentricity of planet b may,
after the initial growth phase, decrease very slightly. A small
change in the initial conditions may lead a migrating system
into a different branch of libration.

A more detailed analysis of trapping with different under-
lying migration scenarios will be published in a forthcoming
paper.

4. Discussion and conclusions

Our results concerning the dynamics of the 3/1 resonance in the
55 CnC planetary system can be summarized as follows:

1) The resonance appears to cover a wide region in phase
space characterized by long term stability (low diffusion
speed). Possible free eccentricities e f

b of planet b range
from 0 to ∼0.4 while that of planet c can reach even ∼0.6
but only for low values of e f

b . Hence, very large osculating
eccentricities of both planets can be reached without lead-
ing to chaotic behaviour.

2) For small planetary eccentricities, resonant motion is con-
fined to a narrow region.

3) Apsidal libration is not essential for stability. It occurs pref-
erentially for small free eccentricities of planet b.

4) Libration of the resonance argument θn is confined to three
distinct regions around 90◦, 270◦ and 180◦. The latter libra-
tors have the largest amplitudes and occur exclusively for
small eccentricities of planet b.

5) The resonant behaviour is robust against small changes in
the planetary masses. The two extreme mass values re-
ported in McArthur et al. (2004) lead to similar diffusion
maps.

6) The presence of planet e explains the reduction of the stable
region. It destabilizes preferentially those resonance sys-
tems where planet b has a large eccentricity. The investi-
gation of the influence of planet e on the 3/1 resonance be-
tween planet b and c is motivated by theoretical interest and
also because Wisdom shows in a preprint (Wisdom 2005)
that the 2.8 day signal found by McArthur et al. 2004 and
interpreted as a Neptune-sized planet might be an alias of
the signal due to planet c.

7) A simple model for planetary migration can account for the
capture in the resonance of the two planets. The subsequent
evolution of the planets locked in resonance leads to an in-
crease of their eccentricities. The corresponding path in the
phase space (Fig. 5) lies in the stable region.

Our results support the hypothesis that planets b and c entered
the orbital 3/1 resonance due to migration. The migration pro-
cess was discontinued when the planets reached their present
eccentricities. Figures 1 and 2 show that planets b and c reside
in a region with a low diffusion speed. The diffusion maps are
produced by integrating hundreds of orbits with different ini-
tial orbital parameters. They can be used to follow evolution-
ary tracks of migrating planets captured in the 3/1 resonance
and to determine their distance to the nominal observed sys-
tem in the phase space of intrinsic resonance variables. This is
a promising tool to determine, in numerical experiments that
simulate planetary migration and resonance capture, the most
probable orbital elements of planets b and c before capture.
Corresponding results for a type II migration scenario will be
presented in a further paper.
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