
HAL Id: hal-02268920
https://hal.science/hal-02268920v1

Submitted on 30 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application of PROSPECT for estimating total
petroleum hydrocarbons in contaminated soils from leaf

optical properties
Guillaume Lassalle, Sophie Fabre, Anthony Credoz, Remy Hedacq, Georges

Bertoni, Dominique Dubucq, Arnaud Elger

To cite this version:
Guillaume Lassalle, Sophie Fabre, Anthony Credoz, Remy Hedacq, Georges Bertoni, et al.. Application
of PROSPECT for estimating total petroleum hydrocarbons in contaminated soils from leaf optical
properties. Journal of Hazardous Materials, 2019, 377, pp.409-417. �10.1016/j.jhazmat.2019.05.093�.
�hal-02268920�

https://hal.science/hal-02268920v1
https://hal.archives-ouvertes.fr


 1 

Application of PROSPECT for estimating Total 

Petroleum Hydrocarbons in contaminated soils from 

leaf optical properties 

Guillaume Lassallea, b, Sophie Fabrea, Anthony Credozb, Rémy Hédacqb, Georges Bertonic, 

Dominique Dubucqd, Arnaud Elgere 

AUTHOR ADDRESS 

a Office National d’Études et de Recherches Aérospatiales (ONERA), Toulouse, France 

b TOTAL S.A., Pôle d’Études et de Recherches de Lacq, Lacq, France 

c DYNAFOR, Université de Toulouse, INRA, Castanet-Tolosan, France 

d TOTAL S.A., Centre Scientifique et Technique Jean-Féger, Pau, France 

e EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France 

*Corresponding author: Guillaume Lassalle, Office National d’Études et de Recherches 

Aérospatiales, 2 Avenue Edouard Belin, 31055 Toulouse, France; E-mail: 

guillaume.lassalle@onera.fr; Tel.: +33562252931 

Keywords: soil contamination, leaf optical properties, PROSPECT, pigment, total petroleum 

hydrocarbons 



 2 

ABSTRACT 

Recent advances in hyperspectral spectroscopy suggest making use of leaf optical properties for 

monitoring soil contamination in oil production regions by detecting pigment alterations induced 

by Total Petroleum Hydrocarbons (TPH). However, this provides no quantitative information 

about the level of contamination. To achieve this, we propose an approach based on the inversion 

of the PROSPECT model. 1620 leaves from five species were collected on a site contaminated by 

16 to 77 g.kg-1 of TPH over a 14-month period. Their spectral signature was measured and used in 

PROSPECT model inversions to retrieve leaf biochemistry. The model performed well for 

simulating the spectral signatures (RMSE < 2%) and for estimating leaf pigment contents (RMSE 

≤ 2.95 µg.cm-2 for chlorophylls). Four out of the five species exhibited alterations in pigment 

contents when exposed to TPH. A strong correlation was established between leaf chlorophyll 

content and soil TPH concentrations (R2 ≥ 0.74) for three of them, allowing accurate predictions 

of TPH (RMSE = 3.20 g.kg-1 and RPD = 5.17). The accuracy of predictions varied by season and 

improved after the growing period. This study demonstrates the capacity of PROSPECT to 

estimate oil contamination and opens up promising perspectives for larger-scale applications.  
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1. Introduction 

In the last decades, increasing efforts have been made to improve the monitoring of past and 

current industrial activities [1-3]. The assessment of health and environmental risks remains a 

major issue as it requires efficient detection of contamination deriving from production facility 

failures and bad practices [4-6]. For this purpose, new approaches using hyperspectral 

spectroscopy have recently emerged in the oil and gas industry [7-8]. In exploiting the light 

absorption features of oil, these approaches have proved efficient for detecting and quantifying 

Total Petroleum Hydrocarbons (TPH) from the spectral signature of soils [9-10]. However, their 

applicability remains limited in vegetated areas, since only few radiations get through the foliage. 

As an alternative, recent studies have proposed exploiting the spectral signature of vegetation to 

detect reflectance changes induced by the presence of oil in soils [11-14]. 

The biophysical and biochemical parameters driving leaf optical properties are likely to be 

affected when vegetation is exposed to TPH [15-17]. This includes alterations in leaf anatomy (e.g. 

cuticle and parenchyma thickness), pigment and water contents [15-16, 18]. These effects mainly 

result from the modification of soil properties and the reduction of root uptake capacities [19-21]. 

They vary according to the species, the level of contamination and the duration of exposure. 

Alterations in leaf biophysical and biochemical parameters lead to reflectance changes, which help 

discriminate between healthy and affected vegetation [12, 22]. Previous work focused on pigment 

alteration, since it is responsible for the increase in reflectance typically observed in the visible 

(VIS) when plants are exposed to TPH [23-25]. The amplitude of this increase is influenced by the 

level of contamination [14, 26]. This suggests that leaf pigments could be used for detecting and 

quantifying oil contamination in vegetated areas. However, no method has been yet proposed in 
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literature. Previous studies focused on quantifying heavy metal contamination deriving from 

mining or agricultural activities, a very different case of soil contamination [27-28]. 

Leaf pigments undergo significant changes throughout the year, depending on the season [29-

31]. Seasonal variations in pigment contents are therefore likely to hide the alterations induced by 

TPH. This can cause confusion and currently represents a major limitation for TPH detection under 

natural conditions. All the more so that not all species are good indicators of TPH, and their 

sensitivity to these contaminants is likely to affect the relative influence of TPH and seasons on 

leaf pigments and reflectance [12, 32-33]. 

The species established around industrial facilities are particularly tolerant to high levels of TPH 

[23, 34]. This makes it difficult to detect and estimate TPH, as this implies being able to 

differentiate small alterations in pigment contents using leaf optical properties. Many approaches 

have been developed in hyperspectral spectroscopy for estimating leaf pigment contents [35-38]. 

The physically-based model PROSPECT [39] proved to be one of the most reliable approaches 

across a wide range of ecological contexts [40-41]. The  model has been recently improved and 

now enables pigment separation [42-43]. This is of major importance for detecting and estimating 

TPH, since not all pigments are affected in the same way by contamination [24-25]. PROSPECT 

could therefore be used for detecting and estimating TPH-induced changes in leaf pigment contents 

and consequently for determining the level of soil contamination [23, 34]. 

This study proposes to assess the potential of leaf optical properties for predicting TPH 

concentrations in the soil, under natural temperate conditions. The proposed method is based on 

the retrieval of leaf pigment contents using the PROSPECT model, which are thereafter linked to 

TPH concentrations. The study was carried out on a range of plant species over a complete seasonal 
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cycle in order to identify the most suitable conditions for predicting TPH. The proposed method 

was compared to other approaches typically used in similar studies. 

 

2. Materials and Methods 

2.1. Study site and species 

The study was carried out on an industrial brownfield located in a temperate region. The site 

was subject to intensive oil and gas activities for 20 years, and production residues contaminated 

by TPH and heavy metals (HM) accumulated in the soil. Since then, it has been colonized by 

vegetation. The study focused on the predominant species, Rubus fruticosus L., which is generally 

well-established on industrial sites in temperate regions. Moreover, this species has already proved 

great potential in hyperspectral spectroscopy for detecting oil-induced pigment alterations [12, 25, 

32]. Other species found on the brownfield, including Quercus pubescens Wild., Populus x 

canadensis Moench., Cornus sanguinea L. and Buddleja davidii Franch., were also tested for their 

sensitivity to TPH. The same species were also studied on an uncontaminated site (hereafter 

described as “control site”) for comparison purposes. This site was located a few kilometers away 

from the brownfield and exhibited similar soil properties. 

 

2.2. Field sampling and measurements 

A mesh of 23 vegetated plots was defined, covering most of the brownfield. Plots consisted in 

areas of one meter in diameter and were spaced by 10 meters. The upper soil layer (0-20 cm) was 

analyzed for contaminants at the center of each plot. Analyses revealed C10-C40 TPH 

concentrations ranging from 16 to 77 g.kg-1, the main contributors being in of the C21-C40 fraction 

(dense hydrocarbons). These concentrations correspond to a moderate to high level of exposure 
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for plants, in comparison with other studies [16, 26]. High concentrations of HM and Polycyclic 

Aromatic Hydrocarbons (PAH) were also found. The detailed soil analyses are given in the 

Supporting Information. 

Leaf samples were collected on site. For each species found in each plot, three young leaves 

were randomly sampled on different individuals. Their reflectance was measured in the [400:2500] 

nm domain using an ASD FieldSpec 4 Hi-Res spectroradiometer (Malvern Panalytical, Malvern, 

UK) and a leaf-clip with an internal light source. These measurements avoid the influence of leaf 

orientation and density and the effects of soil and atmosphere. Leaf radiance was acquired on a 

small black background panel and converted to reflectance as described in [25]. Measurements 

were carried out from June 2017 to October 2018, on a seasonal basis (Tab. 1). This included six 

different sampling dates, with samples taken in contrasted environmental conditions and at 

different phenological stages. On the same dates, additional spectral signatures were acquired on 

the control site. There were no TPH detected in the control soil and low HM concentrations 

corresponded to the geochemical background. Only B. davidii and R. fruticosus were found on the 

brownfield in March 2018. A total of 1620 spectral signatures had been collected on the brownfield 

by the end of the study. 152 leaves were used for determining water (Cw), dry matter (Cm) and 

pigment contents, following the procedures described in [44-45]. Pigments were analyzed by High 

Pressure Liquid Chromatography (HPLC). The chlorophyll content (Cab) was expressed as the sum 

of chlorophylls a and b, and the carotenoid content (Cxc) as the sum of β-carotene and xanthophylls. 

These analyses are detailed in the Supporting Information. They served to validate PROSPECT 

inversion outputs, as described in section 2.3. 
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Table 1. Description of the sampling campaigns carried out on the brownfield. Only R. fruticosus 

and C. sanguinea were found on all 23 plots, except in March 2018. 

 
Date 

Species 
found (n) 

Spectral 
signatures (n)  

Season 
 

      
 June 2017 5 309 Summer (heat waves)  

 October 2017 5 309 Autumn  

 March 2018 2 75 Late winter  

 April 2018 5 309 Spring  

 June 2018 5 309 Summer  

 October 2018 5 309 Autumn  

      

 

 

2.3. PROSPECT inversion and validation 

The PROSPECT model was developed for simulating the hemispherical reflectance and 

transmittance of leaves based on their known structural and biochemical parameters (listed in Tab. 

2). [39]. Inversion of the model allows these parameters to be retrieved from the leaf spectral 

signatures [41-42]. Although PROSPECT was initially calibrated for measurements carried out 

with an integrating sphere, those performed with a leaf-clip can also be used [46-47]. The inversion 

consists in finding the set of structural and biochemical parameters – denoted by the vector θ – that 

best simulates the leaf spectral signature measured [42]. This is achieved by successively testing 

sets of parameters and retaining the one that minimizes the cost function J, defined as: 

 

𝐽(θ) = ∑(Rmeas(λ) −  Rsim(λ, θ))
2

λmax

λmin

 (1) 
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where Rsim and Rmeas stand for the simulated and measured reflectance, respectively [46-48]. The 

cost function is computed in the [λmin:λmax] spectral range [42]. Since only leaf reflectance was 

measured in our study, we simplified the original function that included transmittance [39]. 

PROSPECT inversions were first used to estimate the biochemical parameters of the 152 leaves 

sampled for analysis. Anthocyanins were recently added to the latest version of the model 

(PROSPECT-D), but their concentrations remained below the detection limit for all the species in 

our study. We therefore used the PROSPECT-5 version to perform the inversions as described in 

[49-51]. The six leaf parameters (N, Cab, Cxc, Cbp, Cw and Cm) were simultaneously determined 

through minimization of the cost function (1) over the entire reflective domain (400-2500 nm). (N 

corresponds to the leaf structure parameter and mainly influences reflectance in the near-infrared 

domain (750 – 1300 nm) [39, 52-53].) Inversions were performed using an iterative optimization 

approach. Many methods, such as look-up tables and conventional optimization algorithms have 

been tested for this purpose in previous studies [54-55]. However, these methods can sometimes 

pose problems. For example, local minima and algorithm nonconvergence lead to biased or 

inaccurate estimation of biochemical parameters [56-57]. To avoid this, we used the differential 

evolution (DE) algorithm [58]. The DE combines the advantages of evolutionary and genetic 

algorithms, which proved to be good candidates for solving inversion problems in remote sensing 

[59-61]. To avoid extensive computational time, the parameters tested for optimization were 

constrained to ranges set out in Table 2. For each sample, the best set of leaf parameters was 

retained. Inversion outputs were validated in two ways. The Root Mean Squared Error (RMSE), 

the BIAS and the Standard Error of Prediction Corrected from the bias (SEPC) were used to assess 

the fit between the simulated and the measured spectral signatures on a wavelength-by-wavelength 

basis [42]. The estimated parameters were compared to biochemical analysis using the same 
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metrics and the R2. After validation of the model’s performances, we applied the inversion of 

PROSPECT to the 1620 leaves sampled in order to determine their pigment contents. The same 

procedure was applied to the leaves sampled on the control site. 

 

Table 2. Parameter bounds used to perform PROSPECT inversions. Cab and Cxc bounds were 

extended from those of literature to factor in seasonal variations of leaf pigment contents. 

 
Parameter Unit Range 

 

     
 Leaf structure (N) - 1 - 5  

 Chlorophylls (Cab) µg.cm-2 1 - 100  

 Carotenoids (Cxc) µg.cm-2 1 - 50  

 Brown pigments (Cbp) µg.cm-2 0.01-1  

 Water (Cw) g.cm-2 0.001 - 0.1  

 Dry matter (Cm) g.cm-2 0.001 - 0.1  

 

 

2.4. Variability of leaf pigment contents and TPH estimation 

The study then focused on the chlorophyll and carotenoid contents retrieved from PROSPECT 

inversions. Their seasonal variability was examined for each species using one-way ANOVA and 

Tukey post-hoc tests to look for significant differences among sampling dates. Pigment contents 

were then linked to soil TPH concentrations in order to assess their ability to predict the level of 

contamination. For this purpose, data were divided into 50% train and 50% test sets using the 

Kennard-Stone algorithm, which ensures that representative samples are selected [62-63]. 

Univariate regression models were adjusted between pigment contents and TPH concentrations on 

the train set [26, 63]. The models were then applied to the test set to predict TPH concentrations. 

This procedure was carried out on the five species successively, on each sampling date. The 
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accuracy of the predictions was assessed by calculating the R2 and the RMSE on the train and test 

sets. In addition, we computed the BIAS, the SEPC and the Residual Predictive Deviation (RPD) 

on the test sets to complete the accuracy assessment. The RPD is defined as the ratio of the standard 

deviation of the measured TPH concentration to the RMSE computed between the predicted and 

measured concentrations [27]. The interpretation of RPD values strongly depends on the context 

[27, 64]. RPD values above 2 and 3 are often considered as good and excellent predictions of TPH, 

respectively, and values below 2 as poor ones. A comprehensive flowchart of the method is 

presented in Figure 1. 

In order to assess the accuracy of our approach, the results were compared to those obtained with 

approaches directly linking TPH concentrations to leaf reflectance in the VIS, including pigment-

related vegetation indices (listed in [65]) and partial least square regression (PLSR) with 

reflectance transformation (derivatives, continuum removal, etc.) [12, 27]. These approaches 

usually perform well for tracking reflectance changes induced by contaminants [11-12, 25, 66]. 

The approaches were compared based on the RMSE and RPD values obtained on the test sets. 
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Figure 1. Flowchart of the method presented in this study (N: structure parameter, Cab: 

Chlorophyll content, Cxc: Carotenoid content, Cbp: Brown pigments, Cw: Water, Cm: Dry matter). 

The spectral signatures measured were used to retrieve leaf structural and biochemical 

parameters using PROSPECT-5 inversions. The estimated parameters were compared to 

chemical analyses, and the simulated spectral signatures were compared to the measured ones. 

The estimated pigment contents (Cab and Cxc) obtained for each season were compared, using 

ANOVA and Tukey post-hoc tests, and were then used to predict TPH concentrations with the 

help of univariate models. The predicted TPH concentrations were then compared to those 

obtained from soil analyses.  
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3. Results and Discussion 

3.1. Measured spectral signatures 

Since the five species are well-established on the brownfield, they are naturally tolerant to high 

levels of TPH contamination [25, 32, 67]. Consequently, the leaves did not exhibit marked visible 

stress symptoms, and their spectral signatures strongly differed from those observed for species 

highly affected by oil (Fig. 2) [14, 22, 68]. The spectral signatures did however vary temporally 

and among species during the study. 

 

 

Figure 2. Seasonal evolutions of the mean spectral signatures for the five species on the 

brownfield. 

 

The variability among the five species highlighted natural differences in leaf anatomy and 

biochemistry and in sensitivity to TPH exposure [34, 37, 69]. When considering a single species, 
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the spectral signatures also varied temporally with season changes, especially in the VIS and the 

red-edge regions. The summer of 2017 was characterized by repeated heat waves (June), and 

reflectance was particularly low for all species, varying between 550 and 680 nm and affecting the 

red-edge region on the following sampling dates, an indication of changes in leaf pigment contents 

[66, 70]. Likewise, reflectance in the near- and short-wave infrared regions was also affected by 

the seasons, a sign of changes in leaf anatomy and water content [52, 71-72]. All species do not 

share the same sensitivity to environmental changes from season to season [30-31]. Only small 

seasonal differences in the leaf reflectance of R. fruticosus were observed in relation to the other 

species. In comparison, C. sanguinea underwent substantial changes in October, exhibiting dry 

blackish leaves with very low VIS reflectance. This unknown symptom differed from the autumn 

leaf coloration described on Cornus species [73]. 

The spectral signatures observed on the brownfield are thus the result of leaf anatomy and 

biochemistry, which are strongly influenced by the species’ sensitivities to TPH and the seasons. 

This explains some of the differences observed among the species and is a significant factor in the 

prediction of TPH, as described in sections 3.2. to 3.4. 
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3.2. Evaluation of PROSPECT inversions outputs 

3.2.1. Simulated spectral signatures 

PROSPECT performed well for simulating the spectral signatures of leaves measured during the 

study. The DE algorithm always converged during inversions and the RMSE computed between 

the simulated and measured signatures ranged from 0.2 to 2% reflectance across the entire 

spectrum for the five species. RMSE, BIAS and SEPC values were consistent with those observed 

for other datasets [41-42, 74]. These results are presented in the Supporting Information, along 

with examples of simulated and measured signatures. Although spectral signatures varied 

according to the sampling date, the RMSE remained almost unchanged throughout the study. 

PROSPECT therefore proved efficient for tracking seasonal changes in leaf biochemistry, as 

suggested in previous studies [30]. 

 

3.2.2. Retrieved biochemical parameters 

Chemical analyses performed on the 152 leaves indicated that PROSPECT accurately estimated 

biochemical parameters, regardless of the species. An illustration is provided for R. fruticosus in 

Figure 3. The RMSE between the simulated and measured signatures was particularly low in the 

VIS (< 1.3%), and resulted in accurate retrieval of chlorophyll and carotenoid contents. 

Carotenoids were more difficult to estimate because of predominant absorption of chlorophylls in 

the VIS [42]. However, the RMSE remained below or equal to 1.82 µg.cm-2 for these pigments, 

which still indicated good accuracy. As suggested in previous work, separating carotenoids into 

carotenes and xanthophylls in PROSPECT might improve estimations, but this is not yet possible 

in the current version of the model [42, 75]. Leaf water and dry matter contents were also correctly 
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estimated (Fig. 3). All these results were consistent with those obtained on other datasets [46-48, 

74-75]. 

 

 

Figure 3. Comparisons of the predicted and measured biochemical parameters of R. fruticosus 

leaves. Water and dry matter contents were expressed in mg.cm-2 for graphical convenience. 

 

3.3. Seasonal and interspecific variability of leaf pigments 

The chlorophyll contents estimated throughout study ranged from 9.3 to 90 µg.cm-2 on the 

brownfield, and were higher for all species on the control site with the exception of B. davidii. 

This species was not affected by exposure to TPH and is therefore not a suitable indicator of oil 

contamination. Detailed results can be found in the Supporting Information section. The reduction 

in chlorophyll content observed for the other species is commonly described on oil-exposed 

vegetation [16, 34, 70, 76]. Oil contamination reduces water and nutrient availability for plants as 

well as root uptake capacities [15, 19, 21]. This results in anatomical and biochemical alterations 

in leaves, including a decrease in pigment contents [16-17]. On the brownfield, chlorophyll content 

significantly varied among species (p < 0.05). The chlorophyll contents of R. fruticosus and B. 

davidii systematically attained the highest values, whereas those of Q. pubescens and P. 

canadensis never exceeded 40 µg.cm-2 on average. Chlorophyll content also varied significantly 
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for each species according to sampling dates (p < 0.05), as suggested by the temporal evolution of 

spectral signatures (Fig. 2). These variations were however less marked than those of other 

temperate species [30]. Some smaller differences among species were observed on the control site, 

indicating natural differences in pigment contents [77-79]. Pigment contents on the brownfield 

were thus expressed as percentages of those of the control to factor in these differences and to 

better compare species’ sensitivities to TPH exposure (Fig. 4). 

The chlorophyll content of C. sanguinea leaves taken from the brownfield remained close to that 

of the control site on all dates, indicating this species’ high tolerance to oil contamination (Fig. 4). 

Q. pubescens was the most sensitive species, regardless of the season. The leaf chlorophyll content 

almost remained below 60% of that of the control for this species. R. fruticosus and P. canadensis 

were more tolerant to TPH but their pigment contents still exhibited severe alterations (~70% in 

June and October). This is consistent with the findings of previous studies [24-25]. Such 

differences in sensitivity among species have already been reported in tropical regions [34], but 

the factors influencing this sensitivity remain poorly understood. Oil contamination, as found on 

our study site, is made of a complex cocktail of contaminants – mainly TPH and HM. All these 

contaminants are likely to affect leaf biochemistry, depending on each species’ sensitivity to each 

of them. R. fruticosus, for example, is particularly tolerant to HM [80-81]. Several species, 

including P. canadensis, developed detoxification mechanisms to protect themselves against the 

effects of HM and PAH [67, 82-83]. 

Q. pubescens, P. canadensis and R. fruticosus exhibited a decrease in relative chlorophyll 

content in April (spring) (p < 0.05), after the appearance of new leaves (Fig. 4). Their sensitivity 

to TPH exposure was therefore more pronounced during this period, but remained unchanged 

between June and October in 2017 and 2018, despite important differences in environmental 
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conditions among seasons and years. Only R. fruticosus and B. davidii were found on the 

brownfield in March 2017, and displayed chlorophyll content very similar to that of the control 

site. 

 

 

Figure 4. Temporal evolutions of the relative chlorophyll contents of leaves retrieved from 

PROSPECT inversions on the brownfield, for the five species. 

 

Leaf carotenoid content also varied among species, but did not always vary significantly from 

one season to the next. These results are shown in the Supporting Information. According to 

Archetti et al. [29], seasonal variations in leaf color – and thus in leaf reflectance – tend to result 

from changes in chlorophyll content rather than from carotenoid de novo synthesis. Carotenoid 

content was up to 60% lower on the brownfield than on the control site, indicating alterations 
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induced by exposure to TPH. The observations made regarding relative chlorophyll content also 

apply to carotenoids. Previous studies mentioned that carotenoid pigments (i.e. carotenes and 

xanthophylls) are not affected in the same way by oil contaminants [24-25]. For example, the lutein 

content might increase when plants are exposed to TPH, but the zeaxanthin content might be 

altered. Consequently, separating carotenoid pigments would benefit the detection of TPH-

affected vegetation, but remains difficult when using hyperspectral spectroscopy [42, 75]. 

The degree of pigment alteration therefore reflected species’ sensitivity to TPH, as suggested by 

the spectral signatures observed on the brownfield (Fig. 2). Results indicate that this sensitivity 

varies by season, which is likely to affect TPH predictions, as described in section 3.4. 

 

3.4. Prediction of TPH from leaf pigments 

Leaf pigment contents from the five species were tested to estimate TPH concentrations in the 

soil. The results are summarized in Table 3. A strong relationship was observed on the train sets 

between leaf chlorophyll content and TPH concentrations for R. fruticosus, Q. pubescens and P. 

canadensis in June and October (R2 train ≥ 0.74). The more contaminated the soil, the lower the 

chlorophyll content (Fig. 5). This type of plant response has frequently been reported under 

experimental conditions [15, 17], but never in a natural context and using hyperspectral 

spectroscopy. Leaf chlorophyll content helped predict TPH concentrations with good (RPD > 2) 

or excellent (RPD > 3) accuracy, as indicated by the results obtained on the test sets (Tab. 3). 

Conversely, poor predictions were observed for B. davidii, confirming the absence of effects 

induced by TPH on this species. Over the entire study, the best predictions were obtained with R. 

fruticosus and Q. pubescens, for which the lowest RMSE – 3.63 and 3.20 g.kg-1 respectively – and 

the highest RPD – 4.10 and 5.17 respectively – were observed (Fig. 5). Successful predictions 
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were also achieved with P. canadensis, sometimes even exceeding those of the other species, such 

as in October 2017 (RMSE = 5.86 g.kg-1 and RPD = 3.04). Inaccuracies in pigment estimation also 

affected TPH predictions. For example, the RMSE observed for chlorophylls on R. fruticosus (2.62 

µg.cm-2, Fig. 3) was greater than the pigment variations for TPH concentrations between 40 and 

60 g.kg-1 (Fig. 5). In that sense, making improvements to PROSPECT, including the separation of 

chlorophylls a and b, might help improve TPH predictions [75]. 

Predictions were more accurate for TPH concentrations of less than 30 g.kg-1, because small 

variations rapidly induced changes in chlorophyll content (Fig. 5). Above 30 g.kg-1, TPH were 

more difficult to predict as the chlorophyll content tended to stabilize. This type of difficulty might 

also arise outside of the range studied. Lethal concentrations of TPH would become impossible to 

predict for example. Likewise, predictions might be difficult with R. fruticosus, Q. pubescens and 

P. canadensis at very low concentrations (µg to mg.kg-1), because little or no pigment alterations 

are expected for these species. At such low concentrations, the use of a species more sensitive to 

TPH might however make predictions possible [26]. 
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Table 3. Assessment of Total Petroleum Hydrocarbons (TPH) in the soil predicted from leaf 

chlorophyll content on the train and test datasets. RMSE, BIAS and SEPC are given in g.kg-1 

(abs: absent from the site). The best prediction results are marked in bold. 

 Species Season 
 

train 
 

test  

   
 

R2 RMSE 
 

R2 RMSE BIAS SEPC RPD  

 

B. davidii 

June 2017  0.06 16.78  0.04 16.24 3.04 15.95 1.00  

 October 2017  0.05 19.27  0.07 18.14 -4.40 17.60 0.90  

 March 2018  0.01 17.01  0.03 16.47 -10.35 12.81 0.99  

 April 2018  0.01 21.13  0.02 20.01 -5.50 19.24 0.81  

 June 2018  0.04 16.18  0.07 15.98 0.12 15.98 1.02  

 October 2018  0.01 19.04  0.02 17.76 -1.31 17.71 0.92  

             

 

R. fruticosus 

June 2017  0.89 5.54  0.94 3.63 -0.21 3.62 4.10  

 October 2017  0.61 10.44  0.74 7.64 1.56 7.48 1.95  

 March 2018  0.02 15.47  0.19 17.05 -0.93 17.02 0.87  

 April 2018  0.05 13.31  0.12 18.31 -4.68 17.70 0.81  

 June 2018  0.75 8.56  0.78 6.64 -0.58 6.62 2.24  

 October 2018  0.79 6.50  0.77 8.28 -0.35 8.27 1.80  

             

 

C. sanguinea 

June 2017  0.01 15.71  0.01 15.75 1.93 15.63 1.02  

 October 2017  0.03 17.81  0.04 17.20 0.32 17.19 0.93  

 March 2018  abs. abs.  abs. abs. abs. abs. abs.  

 April 2018  0.01 14.24  0.02 17.33 -1.34 17.28 0.92  

 June 2018  0.01 15.88  0.01 15.98 -0.03 15.98 1.00  

 October 2018  0.04 18.39  0.01 17.45 0.86 17.43 0.92  

             

 

Q. pubescens 

June 2017  0.78 8.41  0.85 5.70 2.24 5.24 2.89  

 October 2017  0.66 10.09  0.86 5.82 0.65 5.79 2.83  

 March 2018  abs. abs.  abs. abs. abs. abs. abs.  

 April 2018  0.01 15.80  0.03 17.94 0.84 17.92 0.92  

 June 2018  0.72 8.93  0.96 3.20 -0.20 3.19 5.17  

 October 2018  0.57 11.82  0.83 5.88 0.66 5.85 2.80  

             

 

P. canadensis 

June 2017  0.61 11.03  0.80 6.85 0.22 6.85 2.60  

 October 2017  0.76 7.62  0.89 5.86 0.67 5.82 3.04  

 March 2018  abs. abs.  abs. abs. abs. abs. abs.  

 April 2018  0.05 16.91  0.13 16.26 5.64 15.25 1.09  

 June 2018  0.62 10.70  0.75 7.83 -1.16 7.74 2.27  

 October 2018  0.74 8.93  0.81 6.62 -3.18 5.81 2.69  

             

 

 



 21 

There was no observable relationship between leaf chlorophyll content and TPH concentrations 

in March and April for R. fruticosus, Q. pubescens and P. canadensis (Tab. 3). Consequently, the 

predictions of TPH on these dates were poor. The leaf chlorophyll content of R. fruticosus was the 

same as that of the control site in March (Fig. 4), meaning that the species was thus not affected 

by TPH, which explains the inaccurate predictions. April was characterized by the appearance of 

new leaves in the three species, along with the most pronounced alteration in leaf chlorophyll 

content. The plants’ sensitivity to TPH exposure is particularly pronounced in the growing stages 

[12, 84]. As a result, chlorophyll content in April 2017 displayed similar alterations regardless of 

the contamination level, which had an impact on TPH predictions. A similar response was 

observed for C. sanguinea leaves over the entire study (Tab. 3). In this case, chlorophyll content 

made it possible to detect but not to quantify TPH (RMSE > 15 g.kg-1, RPD < 1.10). Consequently, 

the relationship between the leaf chlorophyll content and TPH concentrations observed for three 

out of the five species appeared after the growing period (April). This temporal pattern is of critical 

importance for the long-term monitoring of oil activities, as it shows that a single campaign carried 

out at the right time can be sufficient to assess the level of soil contamination. 
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Figure 5. Relationship between predicted leaf chlorophyll content and Total Petroleum 

Hydrocarbons (TPH) in the soil on the train datasets (top figures) and comparisons between 

predicted and measured TPH on the test datasets (bottom figures). 

 

Leaf chlorophyll and carotenoid contents are usually well-correlated [41-42]. However, the 

exposure of plants to TPH altered this correlation. The relationship between carotenoid content 

and TPH was weaker than for chlorophyll content (R2 ≤ 0.60) and made predictions more difficult. 

The results obtained with R. fruticosus, Q. pubescens and P. canadensis were very similar. The 

best RMSE was observed with R. fruticosus (8.31 g.kg-1), but represented poor predictions 

nonetheless (RPD < 2) (see Supporting Information). As discussed above, the contrasting effects 

of TPH on carotenoid pigments might have altered the relationship between leaf carotenoid content 

and TPH concentrations and therefore contributed to inaccuracies. Predictions might be greatly 

improved by separating carotenoid pigments and focusing on particular ones. 

When compared to the proposed approach, vegetation indices and PLSR did not give any more 

accurate TPH predictions for B. davidii and C. sanguinea, confirming that these species are not 
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suitable for predicting TPH. These results are presented in the Supporting Information. Predictions 

were better than those obtained with carotenoid content in the other species, but never reached 

those achieved with chlorophyll content. RMSE never dropped below 5.86 g.kg-1 and RPD never 

exceeded 2.57. Consequently, our approach outperformed vegetation indices and PLSR. One 

possible explanation is that in the VIS, leaf optical properties are mainly influenced by 

chlorophylls, and to a lesser extent by carotenoids – and other pigments – that were less correlated 

to TPH concentrations in our study [35, 37]. Therefore, TPH predictions using vegetation indices 

and PLSR suffered from the influence of carotenoids, which introduced inaccuracies. Conversely, 

the proposed approach using PROSPECT made it possible to isolate chlorophyll content, thereby 

improving TPH predictions. 

 

4. Conclusion 

This study demonstrates that TPH concentrations in oil-contaminated soils can be estimated 

from leaf optical properties using PROSPECT. The model performed well for simulating the 

spectral signatures and for retrieving pigment contents of leaves from exposed vegetation. Leaf 

chlorophyll content was strongly linked to TPH concentrations and allowed accurate predictions 

of these contaminants. The response of carotenoid pigments was complex and made predictions 

more difficult. Our approach was more effective than vegetation indices and PLSR, thanks to 

pigment separation. This study reveals that the accuracy of predictions strongly varies among 

species, because of their different sensitivities to TPH exposure. Three out of the five species 

studied (R. fruticosus, Q. pubescens and P. canadensis) were successful in predicting TPH. 

Moreover, the sensitivity of a single species also varies throughout the year, according to season 
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changes. Changes in the species’ sensitivity, during the growing period (April) for example, affect 

TPH predictions. 

Considering these factors, the proposed approach can be used as a reliable tool for assessing soil 

contamination on oil production facilities. In the future, the approach could be applied to airborne 

images with high spatial and spectral resolutions for monitoring large industrial areas with dense 

vegetation. For this purpose, the combination of the PROSPECT and SAIL models (called 

PROSAIL [40]), which takes into account canopy architecture, Leaf Area Index (LAI) and viewing 

geometry, will be addressed in further research. 
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