Processors
Transformers ライブラリでは、プロセッサは 2 つの異なる意味を持ちます。
- Wav2Vec2 などのマルチモーダル モデルの入力を前処理するオブジェクト (音声とテキスト) または CLIP (テキストとビジョン)
- 古いバージョンのライブラリで GLUE または SQUAD のデータを前処理するために使用されていたオブジェクトは非推奨になりました。
Multi-modal processors
マルチモーダル モデルでは、オブジェクトが複数のモダリティ (テキスト、 視覚と音声)。これは、2 つ以上の処理オブジェクトをグループ化するプロセッサーと呼ばれるオブジェクトによって処理されます。 トークナイザー (テキスト モダリティ用)、画像プロセッサー (視覚用)、特徴抽出器 (オーディオ用) など。
これらのプロセッサは、保存およびロード機能を実装する次の基本クラスを継承します。
This is a mixin used to provide saving/loading functionality for all processor classes.
apply_chat_template
< source >( conversation: typing.List[typing.Dict[str, str]] chat_template: typing.Optional[str] = None tokenize: bool = False **kwargs )
Parameters
- conversation (
List[Dict, str, str]
) — The conversation to format. - chat_template (
Optional[str]
, optional) — The Jinja template to use for formatting the conversation. If not provided, the tokenizer’s chat template is used. - tokenize (
bool
, optional, defaults toFalse
) — Whether to tokenize the output or not. - **kwargs — Additional keyword arguments
Similar to the apply_chat_template
method on tokenizers, this method applies a Jinja template to input
conversations to turn them into a single tokenizable string.
from_args_and_dict
< source >( args processor_dict: typing.Dict[str, typing.Any] **kwargs ) → ~processing_utils.ProcessingMixin
Parameters
- processor_dict (
Dict[str, Any]
) — Dictionary that will be used to instantiate the processor object. Such a dictionary can be retrieved from a pretrained checkpoint by leveraging the~processing_utils.ProcessingMixin.to_dict
method. - kwargs (
Dict[str, Any]
) — Additional parameters from which to initialize the processor object.
Returns
~processing_utils.ProcessingMixin
The processor object instantiated from those parameters.
Instantiates a type of ~processing_utils.ProcessingMixin
from a Python dictionary of parameters.
from_pretrained
< source >( pretrained_model_name_or_path: typing.Union[str, os.PathLike] cache_dir: typing.Union[str, os.PathLike, NoneType] = None force_download: bool = False local_files_only: bool = False token: typing.Union[str, bool, NoneType] = None revision: str = 'main' **kwargs )
Parameters
- pretrained_model_name_or_path (
str
oros.PathLike
) — This can be either:- a string, the model id of a pretrained feature_extractor hosted inside a model repo on huggingface.co.
- a path to a directory containing a feature extractor file saved using the
save_pretrained() method, e.g.,
./my_model_directory/
. - a path or url to a saved feature extractor JSON file, e.g.,
./my_model_directory/preprocessor_config.json
.
- **kwargs —
Additional keyword arguments passed along to both
from_pretrained() and
~tokenization_utils_base.PreTrainedTokenizer.from_pretrained
.
Instantiate a processor associated with a pretrained model.
This class method is simply calling the feature extractor
from_pretrained(), image processor
ImageProcessingMixin and the tokenizer
~tokenization_utils_base.PreTrainedTokenizer.from_pretrained
methods. Please refer to the docstrings of the
methods above for more information.
get_processor_dict
< source >( pretrained_model_name_or_path: typing.Union[str, os.PathLike] **kwargs ) → Tuple[Dict, Dict]
Parameters
- pretrained_model_name_or_path (
str
oros.PathLike
) — The identifier of the pre-trained checkpoint from which we want the dictionary of parameters. - subfolder (
str
, optional, defaults to""
) — In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can specify the folder name here.
Returns
Tuple[Dict, Dict]
The dictionary(ies) that will be used to instantiate the processor object.
From a pretrained_model_name_or_path
, resolve to a dictionary of parameters, to be used for instantiating a
processor of type ~processing_utils.ProcessingMixin
using from_args_and_dict
.
post_process_image_text_to_text
< source >( generated_outputs ) → List[str]
Post-process the output of a vlm to decode the text.
Matches optional positional arguments to their corresponding names in optional_call_args
in the processor class in the order they are passed to the processor call.
Note that this should only be used in the __call__
method of the processors with special
arguments. Special arguments are arguments that aren’t text
, images
, audio
, nor videos
but also aren’t passed to the tokenizer, image processor, etc. Examples of such processors are:
CLIPSegProcessor
LayoutLMv2Processor
OwlViTProcessor
Also note that passing by position to the processor call is now deprecated and will be disallowed in future versions. We only have this for backward compatibility.
Example:
Suppose that the processor class has optional_call_args = ["arg_name_1", "arg_name_2"]
.
And we define the call method as:
def __call__(
self,
text: str,
images: Optional[ImageInput] = None,
*arg,
audio=None,
videos=None,
)
push_to_hub
< source >( repo_id: str use_temp_dir: typing.Optional[bool] = None commit_message: typing.Optional[str] = None private: typing.Optional[bool] = None token: typing.Union[bool, str, NoneType] = None max_shard_size: typing.Union[int, str, NoneType] = '5GB' create_pr: bool = False safe_serialization: bool = True revision: str = None commit_description: str = None tags: typing.Optional[typing.List[str]] = None **deprecated_kwargs )
Parameters
- repo_id (
str
) — The name of the repository you want to push your processor to. It should contain your organization name when pushing to a given organization. - use_temp_dir (
bool
, optional) — Whether or not to use a temporary directory to store the files saved before they are pushed to the Hub. Will default toTrue
if there is no directory named likerepo_id
,False
otherwise. - commit_message (
str
, optional) — Message to commit while pushing. Will default to"Upload processor"
. - private (
bool
, optional) — Whether to make the repo private. IfNone
(default), the repo will be public unless the organization’s default is private. This value is ignored if the repo already exists. - token (
bool
orstr
, optional) — The token to use as HTTP bearer authorization for remote files. IfTrue
, will use the token generated when runninghuggingface-cli login
(stored in~/.huggingface
). Will default toTrue
ifrepo_url
is not specified. - max_shard_size (
int
orstr
, optional, defaults to"5GB"
) — Only applicable for models. The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size lower than this size. If expressed as a string, needs to be digits followed by a unit (like"5MB"
). We default it to"5GB"
so that users can easily load models on free-tier Google Colab instances without any CPU OOM issues. - create_pr (
bool
, optional, defaults toFalse
) — Whether or not to create a PR with the uploaded files or directly commit. - safe_serialization (
bool
, optional, defaults toTrue
) — Whether or not to convert the model weights in safetensors format for safer serialization. - revision (
str
, optional) — Branch to push the uploaded files to. - commit_description (
str
, optional) — The description of the commit that will be created - tags (
List[str]
, optional) — List of tags to push on the Hub.
Upload the processor files to the 🤗 Model Hub.
Examples:
from transformers import AutoProcessor
processor = AutoProcessor.from_pretrained("google-bert/bert-base-cased")
# Push the processor to your namespace with the name "my-finetuned-bert".
processor.push_to_hub("my-finetuned-bert")
# Push the processor to an organization with the name "my-finetuned-bert".
processor.push_to_hub("huggingface/my-finetuned-bert")
register_for_auto_class
< source >( auto_class = 'AutoProcessor' )
Register this class with a given auto class. This should only be used for custom feature extractors as the ones
in the library are already mapped with AutoProcessor
.
This API is experimental and may have some slight breaking changes in the next releases.
save_pretrained
< source >( save_directory push_to_hub: bool = False **kwargs )
Parameters
- save_directory (
str
oros.PathLike
) — Directory where the feature extractor JSON file and the tokenizer files will be saved (directory will be created if it does not exist). - push_to_hub (
bool
, optional, defaults toFalse
) — Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the repository you want to push to withrepo_id
(will default to the name ofsave_directory
in your namespace). - kwargs (
Dict[str, Any]
, optional) — Additional key word arguments passed along to the push_to_hub() method.
Saves the attributes of this processor (feature extractor, tokenizer…) in the specified directory so that it can be reloaded using the from_pretrained() method.
This class method is simply calling save_pretrained() and save_pretrained(). Please refer to the docstrings of the methods above for more information.
to_dict
< source >( ) → Dict[str, Any]
Returns
Dict[str, Any]
Dictionary of all the attributes that make up this processor instance.
Serializes this instance to a Python dictionary.
to_json_file
< source >( json_file_path: typing.Union[str, os.PathLike] )
Save this instance to a JSON file.
to_json_string
< source >( ) → str
Returns
str
String containing all the attributes that make up this feature_extractor instance in JSON format.
Serializes this instance to a JSON string.
Deprecated processors
すべてのプロセッサは、同じアーキテクチャに従っています。
DataProcessor。プロセッサは次のリストを返します。
InputExample。これら
InputExample は次のように変換できます。
~data.processors.utils.Input features
をモデルにフィードします。
Base class for data converters for sequence classification data sets.
Gets a collection of InputExample for the dev set.
get_example_from_tensor_dict
< source >( tensor_dict )
Gets an example from a dict with tensorflow tensors.
Gets the list of labels for this data set.
Gets a collection of InputExample for the test set.
Gets a collection of InputExample for the train set.
Some tensorflow_datasets datasets are not formatted the same way the GLUE datasets are. This method converts examples to the correct format.
class transformers.InputExample
< source >( guid: str text_a: str text_b: typing.Optional[str] = None label: typing.Optional[str] = None )
Parameters
- guid — Unique id for the example.
- text_a — string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified.
- text_b — (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks.
- label — (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples.
A single training/test example for simple sequence classification.
Serializes this instance to a JSON string.
class transformers.InputFeatures
< source >( input_ids: typing.List[int] attention_mask: typing.Optional[typing.List[int]] = None token_type_ids: typing.Optional[typing.List[int]] = None label: typing.Union[int, float, NoneType] = None )
Parameters
- input_ids — Indices of input sequence tokens in the vocabulary.
- attention_mask — Mask to avoid performing attention on padding token indices.
Mask values selected in
[0, 1]
: Usually1
for tokens that are NOT MASKED,0
for MASKED (padded) tokens. - token_type_ids — (Optional) Segment token indices to indicate first and second portions of the inputs. Only some models use them.
- label — (Optional) Label corresponding to the input. Int for classification problems, float for regression problems.
A single set of features of data. Property names are the same names as the corresponding inputs to a model.
Serializes this instance to a JSON string.
GLUE
一般言語理解評価 (GLUE) は、 既存の NLU タスクの多様なセットにわたるモデルのパフォーマンス。紙と同時発売された GLUE: A 自然言語理解のためのマルチタスクベンチマークおよび分析プラットフォーム
このライブラリは、MRPC、MNLI、MNLI (不一致)、CoLA、SST2、STSB、 QQP、QNLI、RTE、WNLI。
それらのプロセッサは次のとおりです。
~data.processors.utils.MrpcProcessor
~data.processors.utils.MnliProcessor
~data.processors.utils.MnliMismatchedProcessor
~data.processors.utils.Sst2Processor
~data.processors.utils.StsbProcessor
~data.processors.utils.QqpProcessor
~data.processors.utils.QnliProcessor
~data.processors.utils.RteProcessor
~data.processors.utils.WnliProcessor
さらに、次のメソッドを使用して、データ ファイルから値をロードし、それらをリストに変換することができます。 InputExample。
transformers.glue_convert_examples_to_features
< source >( examples: typing.Union[typing.List[transformers.data.processors.utils.InputExample], ForwardRef('tf.data.Dataset')] tokenizer: PreTrainedTokenizer max_length: typing.Optional[int] = None task = None label_list = None output_mode = None )
Parameters
- examples — List of
InputExamples
ortf.data.Dataset
containing the examples. - tokenizer — Instance of a tokenizer that will tokenize the examples
- max_length — Maximum example length. Defaults to the tokenizer’s max_len
- task — GLUE task
- label_list — List of labels. Can be obtained from the processor using the
processor.get_labels()
method - output_mode — String indicating the output mode. Either
regression
orclassification
Loads a data file into a list of InputFeatures
XNLI
クロスリンガル NLI コーパス (XNLI) は、 言語を超えたテキスト表現の品質。 XNLI は、MultiNLI に基づくクラウドソースのデータセットです。テキストのペアには、15 個のテキスト含意アノテーションがラベル付けされています。 さまざまな言語 (英語などの高リソース言語とスワヒリ語などの低リソース言語の両方を含む)。
論文 XNLI: Evaluating Cross-lingual Sentence Representations と同時にリリースされました。
このライブラリは、XNLI データをロードするプロセッサをホストします。
~data.processors.utils.XnliProcessor
テストセットにはゴールドラベルが付いているため、評価はテストセットで行われますのでご了承ください。
これらのプロセッサを使用する例は、run_xnli.py スクリプトに示されています。
SQuAD
The Stanford Question Answering Dataset (SQuAD) は、次のベンチマークです。 質問応答に関するモデルのパフォーマンスを評価します。 v1.1 と v2.0 の 2 つのバージョンが利用可能です。最初のバージョン (v1.1) は、論文 SQuAD: 100,000+ question for Machine Comprehension of Text とともにリリースされました。 2 番目のバージョン (v2.0) は、論文 Know What You Don’t と同時にリリースされました。 知っておくべき: SQuAD の答えられない質問。
このライブラリは、次の 2 つのバージョンのそれぞれのプロセッサをホストします。
Processors
それらのプロセッサは次のとおりです。
~data.processors.utils.SquadV1Processor
~data.processors.utils.SquadV2Processor
どちらも抽象クラス ~data.processors.utils.SquadProcessor
を継承しています。
Processor for the SQuAD data set. overridden by SquadV1Processor and SquadV2Processor, used by the version 1.1 and version 2.0 of SQuAD, respectively.
get_dev_examples
< source >( data_dir filename = None )
Returns the evaluation example from the data directory.
get_examples_from_dataset
< source >( dataset evaluate = False )
Creates a list of SquadExample
using a TFDS dataset.
get_train_examples
< source >( data_dir filename = None )
Returns the training examples from the data directory.
さらに、次のメソッドを使用して、SQuAD の例を次の形式に変換できます。
モデルの入力として使用できる ~data.processors.utils.SquadFeatures
。
transformers.squad_convert_examples_to_features
< source >( examples tokenizer max_seq_length doc_stride max_query_length is_training padding_strategy = 'max_length' return_dataset = False threads = 1 tqdm_enabled = True )
Parameters
- examples — list of
SquadExample
- tokenizer — an instance of a child of PreTrainedTokenizer
- max_seq_length — The maximum sequence length of the inputs.
- doc_stride — The stride used when the context is too large and is split across several features.
- max_query_length — The maximum length of the query.
- is_training — whether to create features for model evaluation or model training.
- padding_strategy — Default to “max_length”. Which padding strategy to use
- return_dataset — Default False. Either ‘pt’ or ‘tf’. if ‘pt’: returns a torch.data.TensorDataset, if ‘tf’: returns a tf.data.Dataset
- threads — multiple processing threads.
Converts a list of examples into a list of features that can be directly given as input to a model. It is model-dependant and takes advantage of many of the tokenizer’s features to create the model’s inputs.
Example:
processor = SquadV2Processor()
examples = processor.get_dev_examples(data_dir)
features = squad_convert_examples_to_features(
examples=examples,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
doc_stride=args.doc_stride,
max_query_length=args.max_query_length,
is_training=not evaluate,
)
これらのプロセッサと前述の方法は、データを含むファイルだけでなく、 tensorflow_datasets パッケージ。以下に例を示します。
Example usage
以下にプロセッサを使用した例と、データ ファイルを使用した変換方法を示します。
# Loading a V2 processor
processor = SquadV2Processor()
examples = processor.get_dev_examples(squad_v2_data_dir)
# Loading a V1 processor
processor = SquadV1Processor()
examples = processor.get_dev_examples(squad_v1_data_dir)
features = squad_convert_examples_to_features(
examples=examples,
tokenizer=tokenizer,
max_seq_length=max_seq_length,
doc_stride=args.doc_stride,
max_query_length=max_query_length,
is_training=not evaluate,
)
tensorflow_datasets の使用は、データ ファイルを使用するのと同じくらい簡単です。
# tensorflow_datasets only handle Squad V1.
tfds_examples = tfds.load("squad")
examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate)
features = squad_convert_examples_to_features(
examples=examples,
tokenizer=tokenizer,
max_seq_length=max_seq_length,
doc_stride=args.doc_stride,
max_query_length=max_query_length,
is_training=not evaluate,
)
これらのプロセッサを使用する別の例は、run_squad.py スクリプトに示されています。
< > Update on GitHub