Dalam kalkulus, pendiferensialan logaritmik adalah metode untuk mencari turunan suatu fungsi dengan menggunakan turunan logaritmik dari fungsi [1]
atau bisa juga ditulis
Teknik ini biasanya digunakan pada kasus dimana lebih mudah untuk mencari turunan logaritmik dari suatu fungsi, dibandingkan menurunkan fungsi tersebut secara langsung. Hal ini umumnya terjadi pada kasus dimana fungsinya terdiri dari perkalian beberapa suku, sehingga transformasi logaritmik akan mengubah operasi perkalian tersebut menjadi penjumlahan (yang tentunya lebih mudah untuk dicari turunannya). Teknik ini juga berguna ketika diterapkan pada fungsi yang dipangkatkan dengan suatu fungsi lain. Metode pendiferensialan logaritmik bergantung kepada kaidah rantai beserta sifat-sifat dari logaritma (khususnya logaritma alami, yaitu logaritma dengan basis e) untuk mengubah perkalian menjadi penjumlahan dan pembagian menjadi pengurangan.[2][3]
Metode ini digunakan sebab sifat-sifat dari logaritma memberikan jalan cepat untuk menyederhanakan fungsi-fungsi rumit yang akan dicari turunannya.[4] Sebelum proses pencarian turunan, sifat-sifat ini dapat dimanipulasi setelah kedua ruas dikenakan logaritma alami. Sifat-sifat logaritma yang umum digunakan ialah[3]
Untuk mencari turunan dari hasil kali dua fungsi
maka kedua ruas dapat dikenakan logaritma alami, sehingga operasi perkaliannya berubah menjadi penjumlahan
Dengan menggunakan kaidah rantai dan kaidah penjumlahan, maka diperoleh[5]
yang merupakan kaidah darab dalam turunan.
Untuk mencari turunan dari hasil bagi dua fungsi
maka kedua ruas dapat dikenakan logaritma alami, sehingga operasi pembagiannya berubah menjadi pengurangan
Dengan menggunakan kaidah rantai dan kaidah penjumlahan, maka diperoleh
yang merupakan kaidah hasil-bagi dalam turunan.
Apabila fungsinya memiliki bentuk umum
maka dengan mengenakan logaritma alami pada kedua ruas, operasi exponen yang ada akan menjadi perkalian, sehingga didapatkan
Dengan menggunakan kaidah rantai dan kaidah darab, maka diperoleh
Hasil yang sama juga dapat diperoleh apabila fungsi dinyatakan sebagai yang diikuti oleh kaidah rantai.
Dengan menggunakan notasi Pi kapital, misalkan
adalah hasil kali berhingga dari fungsi dengan eksponen fungsi.
Dengan mengenakan logaritma alami pada kedua ruas, operasi perkaliannya akan berubah menjadi operasi penjumlahan, sehingga notasi Pi kapital di atas akan berubah menjadi notasi sigma kapital.
Apabila kedua ruas diturunkan terhadap , maka didapatkan