The American Society for Clinical Investigation (ASCI) was started a century ago to foster and to... more The American Society for Clinical Investigation (ASCI) was started a century ago to foster and to address the needs of the younger physician-scientists. A hundred years later, ASCI remains one of the premier organizations for physician-scientists and one of most well-respected organizations in the medical community. I have had the opportunity and pleasure to interact with the ASCI not only as an organization through my tenure as president of the American Physician Scientists Association, but also with its members over the last four years. In my view, the same characteristics that permeate ASCI the organization also define ASCI the membership -mentorship, exemplary role models, advocacy, and leadership.
Breast cancer continues to be one of the most widely diagnosed forms of cancer in women and the s... more Breast cancer continues to be one of the most widely diagnosed forms of cancer in women and the second leading type of cancer deaths for women. The metastatic spread and staging of breast cancer is typically evaluated through the nodal assessment of the regional lymphatic system, and often this is performed during the surgical resection of the tumor mass. The recurrence rate of breast cancer is highly dependent on several factors including the complete removal of the primary tumor during surgery, and the presence of cancer cells in involved lymph nodes. Hence, developing means to more accurately resect tumor cells, along with the tumor mass, and ensure negative surgical margins, offers the potential to impact outcomes of breast cancer. The use of diffuse optical tomography has been applied for screening optical mammography applications as an alternative to standard x-ray mammography. The use of coherence ranging and coherent optical imaging in breast tissue has also found numerous applications, including intra-operative assessment of tumor margin status during lumpectomy procedures, assessment of lymph node changes for staging metastatic spread, and for guiding needle-biopsy procedures. The development, pre-clinical testing, and translation of techniques such as low-coherence interferometry (LCI) and optical coherence tomography (OCT) into clinical applications in breast cancer is demonstrated in these feasibility studies.
Needle-based devices, which are in wide clinical use for needle biopsy procedures, may be augment... more Needle-based devices, which are in wide clinical use for needle biopsy procedures, may be augmented by suitable optical techniques for the localization and diagnosis of diseased tissue. Tissue refractive index is one optical contrast mechanism with diagnostic potential. In the case of mammary tissue, for example, recent research indicates that refractive index variations between tissue types may be useful for the identification of cancerous tissue. While many coherence-based forward-sensing devices have been developed to detect scattering changes, none have demonstrated refractive index measurement capabilities. We present a novel needle-based device that is capable of simultaneously measuring refractive index and scattering. Coupled to the sample arm of an optical coherence tomography system, the needle device detects the scattering response and optical pathlength through tissue residing in a fixed-width channel. Near-infrared measurements of tissues and materials with known optical properties using a prototype device will be presented. This work demonstrates the feasibility of integrated in vivo measurement of refractive index and scattering in conjunction with existing clinical needle-based devices.
Optical coherence tomography (OCT) is an emerging biomedical imaging modality that has been devel... more Optical coherence tomography (OCT) is an emerging biomedical imaging modality that has been developed over the last 15 years. More recently, OCT has been used for the intraoperative imaging of tumor margins in breast cancer and axillary lymph nodes providing a real time in-vivo assessment of the tissue morphology. Traditional OCT images are limited by only being able to observe morphological structures. As diagnostic medicine continues to push for earlier detection, one must develop functional imaging modalities that would detect molecular information in-vivo allowing a real-time microscopic analysis of the tissue specimen. A novel modality of OCT called magnetomotive-OCT (MM-OCT) has been developed by our group, employing an induced modulated magnetic field with a magnetic contrast agent to create the added contrast to structural OCT images. Modified protein microspheres with a BSA protein shell functionalized with RGD peptide sequences for targeting and an oil core have been designed and synthesized. Magnetic nanoparticles (Fe 3 O 4 ) and Nile Red dye have been encapsulated into its oil core. These microspheres have previously been demonstrated to target cancer cells by functionalizing them with a layer of RGD peptides and could be functionalized with monoclonal antibodies. Preliminary results show that these magnetic microspheres, which are 2.0-5.0 microns in size, are readily detectable under MM-OCT when embedded in a 5% agarose gel, in a 3-D scaffold of macrophage cells previously incubated with the microspheres, and when injected in-vivo into a tumor from an NMUcarcinogen rat animal model for breast cancer.
We report the first demonstration of OCT for the three-dimensional visualization of lymph node mo... more We report the first demonstration of OCT for the three-dimensional visualization of lymph node morphology and microarchitecture from human and carcinogen-induced rat mammary tumor specimens.
Optical coherence tomography (OCT) is an emerging biomedical imaging modality that has been devel... more Optical coherence tomography (OCT) is an emerging biomedical imaging modality that has been developed over the last 15 years. More recently, OCT has been used for the intraoperative imaging of tumor margins in breast cancer and axillary lymph nodes providing a real time in-vivo assessment of the tissue morphology. Traditional OCT images are limited by only being able to observe morphological structures. As diagnostic medicine continues to push for earlier detection, one must develop functional imaging modalities that would detect molecular information in-vivo allowing a real-time microscopic analysis of the tissue specimen. A novel modality of OCT called magnetomotive-OCT (MMOCT) has been developed by our group, employing an induced modulated magnetic field with a magnetic contrast agent to create the added contrast to structural OCT images. Modified protein microspheres with a BSA protein shell functionalized with RGD peptide sequences for targeting and an oil core have been designed and synthesized. Magnetic nanoparticles (Fe3O4) and Nile Red dye have been encapsulated into its oil core. These microspheres have previously been demonstrated to target cancer cells by functionalizing them with a layer of RGD peptides and could be functionalized with monoclonal antibodies. Preliminary results show that these magnetic microspheres, which are 2.0- 5.0 microns in size, are readily detectable under MM-OCT when embedded in a 5% agarose gel, in a 3-D scaffold of macrophage cells previously incubated with the microspheres, and when injected in-vivo into a tumor from an NMUcarcinogen rat animal model for breast cancer.
Proceedings of The National Academy of Sciences, 2005
We present an approach called pulsed multiline excitation (PME) for measurements of multicomponen... more We present an approach called pulsed multiline excitation (PME) for measurements of multicomponent, fluorescence species and demonstrate its application in capillary electrophoresis for DNA sequencing. To fully demonstrate the advantages of PME, a fluorescent dye set has been developed whose absorption maxima span virtually the entire visible spectrum. Unlike emission wavelength-dependent approaches for identifying fluorescent species, the removal of the spectral component in PME confers a number of advantages including higher and normalized signals from all dyes present in the assay, the elimination of spectral cross-talk between dyes, and higher signal collection efficiency. Base-calling is unambiguously determined once dye mobility corrections are made. These advantages translate into significantly enhanced signal quality as illustrated in the primary DNA sequencing data and provide a means for achieving accurate base-calling at lower reagent concentrations. fluorescent detection ͉ instrumentation PME Coaxial Beam Alignment. To ensure that the four pulsed laser beams were collimated and coaxial, and that the collection optics were transmitting maximum signal intensities for all four dyes, the following four-step alignment procedure was developed: (i) a knife edge test was applied to the beam waist of each laser to provide coincidence for x,y coordinates, (ii) beams were made to overlap in
, and enriched using a 0.5 T magnetic array. The resulting nanotube complexes show distinct NIR f... more , and enriched using a 0.5 T magnetic array. The resulting nanotube complexes show distinct NIR fluorescence, Raman scattering, and visible/NIR absorbance features, corresponding to the various nanotube species. AFM and cryo-TEM images show DNA-encapsulated complexes composed of a ∼3 nm particle attached to a carbon nanotube on one end. X-ray diffraction (XRD) and superconducting quantum interference device (SQUID) measurements reveal that the nanoparticles are primarily Fe 2 O 3 and superparamagnetic. The Fe 2 O 3 particle-enriched nanotube solution has a magnetic particle content of ∼35 wt %, a magnetization saturation of ∼56 emu/g, and a magnetic relaxation time scale ratio (T 1 /T 2 ) of approximately 12. These complexes have a longer spin−spin relaxation time (T 2 ∼ 164 ms) than typical ferromagnetic particles due to the smaller size of their magnetic component while still retaining SWNT optical signatures. Macrophage cells that engulf the DNA-wrapped complexes were imaged using magnetic resonance imaging (MRI) and NIR mapping, demonstrating that these multifunctional nanostructures could potentially be useful in multimodal biomedical imaging.
Fourier transform light scattering (FTLS) is a novel experimental approach that combines optical ... more Fourier transform light scattering (FTLS) is a novel experimental approach that combines optical microscopy, holography, and light scattering for studying inhomogeneous and dynamic media. In FTLS the optical phase and amplitude of a coherent image field are quantified and propagated numerically to the scattering plane. Because it detects all the scattered angles (spatial frequencies) simultaneously in each point of the image, FTLS can be regarded as the spatial equivalent of Fourier transform infrared spectroscopy, where all the temporal frequencies are detected at each moment in time.
As breast cancer screening rates increase, smaller and more numerous lesions are being identified... more As breast cancer screening rates increase, smaller and more numerous lesions are being identified earlier, leading to more breast-conserving surgical procedures. Achieving a clean surgical margin represents a technical challenge with important clinical implications. Optical coherence tomography (OCT) is introduced as an intraoperative high-resolution imaging technique that assesses surgical breast tumor margins by providing real-time microscopic images up to 2 mm beneath the tissue surface. In a study of 37 patients split between training and study groups, OCT images covering 1 cm 2 regions were acquired from surgical margins of lumpectomy specimens, registered with ink, and correlated with corresponding histologic sections. A 17-patient training set used to establish standard imaging protocols and OCT evaluation criteria showed that areas of higher scattering tissue with a heterogeneous pattern were indicative of tumor cells and tumor tissue in contrast to lower scattering adipocytes found in normal breast tissue. The remaining 20 patients were enrolled into the feasibility study. Of these lumpectomy specimens, 11 were identified with a positive or close surgical margin and 9 were identified with a negative margin under OCT. Based on histologic findings, 9 true positives, 9 true negatives, 2 false positives, and 0 false negatives were found, yielding a sensitivity of 100% and specificity of 82%. These results show the potential of OCT as a real-time method for intraoperative margin assessment in breast-conserving surgeries. [Cancer Res 2009;69(22):8790-6] Requests for reprints:
Purpose In this study, protein-shell microspheres filled with a suspension of iron oxide nanopart... more Purpose In this study, protein-shell microspheres filled with a suspension of iron oxide nanoparticles in oil are demonstrated as multimodal contrast agents in magnetic resonance imaging (MRI), magnetomotive optical coherence tomography (MM-OCT), and ultrasound imaging. The development, characterization, and use of multifunctional multimodal microspheres are described for targeted contrast and therapeutic applications. Procedures A preclinical rat model was used to demonstrate the feasibility of the multimodal multifunctional microspheres as contrast agents in ultrasound, MM-OCT and MRI. Microspheres were functionalized with the RGD peptide ligand, which is targeted to αvβ3 integrin receptors that are over-expressed in tumors and atherosclerotic lesions. Results These microspheres, which contain iron oxide nanoparticles in their cores, can be modulated externally using a magnetic field to create dynamic contrast in MM-OCT. With the presence of iron oxide nanoparticles, these agents also show significant negative T2 contrast in MRI. Using ultrasound B-mode imaging at a frequency of 30 MHz, a marked enhancement of scatter intensity from in vivo rat mammary tumor tissue was observed for these targeted protein microspheres. Conclusions Preliminary results demonstrate multimodal contrast-enhanced imaging of these functionalized microsphere agents with MRI, MM-OCT, ultrasound imaging, and fluorescence microscopy, including in vivo tracking of the dynamics of these microspheres in real-time using a high-frequency ultrasound imaging system. These targeted oil-filled protein microspheres with the capacity for high drug-delivery loads offer the potential for local delivery of lipophilic drugs under image guidance.
IEEE Engineering in Medicine and Biology Magazine, 2010
D uring breast-conserving surgeries, axillary lymph nodes draining from the primary tumor site ar... more D uring breast-conserving surgeries, axillary lymph nodes draining from the primary tumor site are removed for disease staging. Although a high number of lymph nodes are often resected during sentinel and lymph-node dissections, only a relatively small percentage of nodes are found to be metastatic, a fact that must be weighed against potential complications such as lymphedema. Without a real-time in vivo or in situ intraoperative imaging tool to provide a microscopic assessment of the nodes, postoperative paraffin section histopathological analysis currently remains the gold standard in assessing the status of lymph nodes. Optical coherence tomography (OCT), a high-resolution real-time microscopic optical-imaging technique previously used to image breast cancer tumor margins intraoperatively in humans and lymph-node microarchitecture in a rat animal model, is being presented for the intraoperative ex vivo imaging and assessment of axillary lymph nodes. OCT provides real-time microscopic images up to 2 mm beneath the tissue surface in axillary lymph nodes. Normal (13), reactive (1), and metastatic (3) lymph nodes from 17 human patients with breast cancer were imaged intraoperatively with OCT. These preliminary clinical studies have identified scattering changes in the cortex, relative to the capsule, which can be used to differentiate normal from reactive and metastatic nodes. These optical scattering changes are correlated with inflammatory and immunological changes observed in the follicles and germinal centers. These results suggest that intraoperative OCT has the potential to assess the real-time node status in situ, without having to physically resect and histologically process specimens to visualize microscopic features. Breast Cancer Breast cancer continues to affect a significant proportion of women, as 192,370 new cases of invasive breast cancer and 62,280 cases of ductal carcinoma in situ (DCIS) are expected in the United States during 2009, making it the most widely diagnosed cancer (26% of new cases) in women [1]. The number of deaths attributed to breast cancer (40,610 expected in 2009-second only to lung cancer) has started to decrease over the last few years, largely attributed to the effectiveness of breast-cancer screening [1]
Since its introduction, optical coherence tomography ͑OCT͒ technology has advanced from the labor... more Since its introduction, optical coherence tomography ͑OCT͒ technology has advanced from the laboratory bench to the clinic and back again. Arising from the fields of low coherence interferometry and optical time-and frequency-domain reflectometry, OCT was initially demonstrated for retinal imaging and followed a unique path to commercialization for clinical use. Concurrently, significant technological advances were brought about from within the research community, including improved laser sources, beam delivery instruments, and detection schemes. While many of these technologies improved retinal imaging, they also allowed for the application of OCT to many new clinical areas. As a result, OCT has been clinically demonstrated in a diverse set of medical and surgical specialties, including gastroenterology, dermatology, cardiology, and oncology, among others. The lessons learned in the clinic are currently spurring a new set of advances in the laboratory that will again expand the clinical use of OCT by adding molecular sensitivity, improving image quality, and increasing acquisition speeds. This continuous cycle of laboratory development and clinical application has allowed the OCT technology to grow at a rapid rate and represents a unique model for the translation of biomedical optics to the patient bedside. This work presents a brief history of OCT development, reviews current clinical applications, discusses some clinical translation challenges, and reviews laboratory developments poised for future clinical application.
Since its introduction, optical coherence tomography ͑OCT͒ technology has advanced from the labor... more Since its introduction, optical coherence tomography ͑OCT͒ technology has advanced from the laboratory bench to the clinic and back again. Arising from the fields of low coherence interferometry and optical time-and frequency-domain reflectometry, OCT was initially demonstrated for retinal imaging and followed a unique path to commercialization for clinical use. Concurrently, significant technological advances were brought about from within the research community, including improved laser sources, beam delivery instruments, and detection schemes. While many of these technologies improved retinal imaging, they also allowed for the application of OCT to many new clinical areas. As a result, OCT has been clinically demonstrated in a diverse set of medical and surgical specialties, including gastroenterology, dermatology, cardiology, and oncology, among others. The lessons learned in the clinic are currently spurring a new set of advances in the laboratory that will again expand the clinical use of OCT by adding molecular sensitivity, improving image quality, and increasing acquisition speeds. This continuous cycle of laboratory development and clinical application has allowed the OCT technology to grow at a rapid rate and represents a unique model for the translation of biomedical optics to the patient bedside. This work presents a brief history of OCT development, reviews current clinical applications, discusses some clinical translation challenges, and reviews laboratory developments poised for future clinical application.
As breast cancer screening rates increase, smaller and more numerous lesions are being identified... more As breast cancer screening rates increase, smaller and more numerous lesions are being identified earlier, leading to more breast-conserving surgical procedures. Achieving a clean surgical margin represents a technical challenge with important clinical implications. Optical coherence tomography (OCT) is introduced as an intraoperative high-resolution imaging technique that assesses surgical breast tumor margins by providing real-time microscopic images up to 2 mm beneath the tissue surface. In a study of 37 patients split between training and study groups, OCT images covering 1 cm 2 regions were acquired from surgical margins of lumpectomy specimens, registered with ink, and correlated with corresponding histologic sections. A 17-patient training set used to establish standard imaging protocols and OCT evaluation criteria showed that areas of higher scattering tissue with a heterogeneous pattern were indicative of tumor cells and tumor tissue in contrast to lower scattering adipocytes found in normal breast tissue. The remaining 20 patients were enrolled into the feasibility study. Of these lumpectomy specimens, 11 were identified with a positive or close surgical margin and 9 were identified with a negative margin under OCT. Based on histologic findings, 9 true positives, 9 true negatives, 2 false positives, and 0 false negatives were found, yielding a sensitivity of 100% and specificity of 82%. These results show the potential of OCT as a real-time method for intraoperative margin assessment in breast-conserving surgeries. [Cancer Res 2009;69(22):8790-6] Requests for reprints:
We employ Fourier-transform light scattering, a technique recently developed in our laboratory, t... more We employ Fourier-transform light scattering, a technique recently developed in our laboratory, to study the scattering properties of rat organ tissues. Using the knowledge of the complex field associated with highresolution microscope images of tissue slices, we extracted the scattering mean-free path l s and anisotropy factor g, which characterize the bulk tissue for three different rat organs. This "bottom up" approach to measuring tissue scattering parameters allows for predicting the wave transport phenomena within the organ of interest at a multitude of scales-from organelle to organ level.
The American Society for Clinical Investigation (ASCI) was started a century ago to foster and to... more The American Society for Clinical Investigation (ASCI) was started a century ago to foster and to address the needs of the younger physician-scientists. A hundred years later, ASCI remains one of the premier organizations for physician-scientists and one of most well-respected organizations in the medical community. I have had the opportunity and pleasure to interact with the ASCI not only as an organization through my tenure as president of the American Physician Scientists Association, but also with its members over the last four years. In my view, the same characteristics that permeate ASCI the organization also define ASCI the membership -mentorship, exemplary role models, advocacy, and leadership.
Breast cancer continues to be one of the most widely diagnosed forms of cancer in women and the s... more Breast cancer continues to be one of the most widely diagnosed forms of cancer in women and the second leading type of cancer deaths for women. The metastatic spread and staging of breast cancer is typically evaluated through the nodal assessment of the regional lymphatic system, and often this is performed during the surgical resection of the tumor mass. The recurrence rate of breast cancer is highly dependent on several factors including the complete removal of the primary tumor during surgery, and the presence of cancer cells in involved lymph nodes. Hence, developing means to more accurately resect tumor cells, along with the tumor mass, and ensure negative surgical margins, offers the potential to impact outcomes of breast cancer. The use of diffuse optical tomography has been applied for screening optical mammography applications as an alternative to standard x-ray mammography. The use of coherence ranging and coherent optical imaging in breast tissue has also found numerous applications, including intra-operative assessment of tumor margin status during lumpectomy procedures, assessment of lymph node changes for staging metastatic spread, and for guiding needle-biopsy procedures. The development, pre-clinical testing, and translation of techniques such as low-coherence interferometry (LCI) and optical coherence tomography (OCT) into clinical applications in breast cancer is demonstrated in these feasibility studies.
Needle-based devices, which are in wide clinical use for needle biopsy procedures, may be augment... more Needle-based devices, which are in wide clinical use for needle biopsy procedures, may be augmented by suitable optical techniques for the localization and diagnosis of diseased tissue. Tissue refractive index is one optical contrast mechanism with diagnostic potential. In the case of mammary tissue, for example, recent research indicates that refractive index variations between tissue types may be useful for the identification of cancerous tissue. While many coherence-based forward-sensing devices have been developed to detect scattering changes, none have demonstrated refractive index measurement capabilities. We present a novel needle-based device that is capable of simultaneously measuring refractive index and scattering. Coupled to the sample arm of an optical coherence tomography system, the needle device detects the scattering response and optical pathlength through tissue residing in a fixed-width channel. Near-infrared measurements of tissues and materials with known optical properties using a prototype device will be presented. This work demonstrates the feasibility of integrated in vivo measurement of refractive index and scattering in conjunction with existing clinical needle-based devices.
Optical coherence tomography (OCT) is an emerging biomedical imaging modality that has been devel... more Optical coherence tomography (OCT) is an emerging biomedical imaging modality that has been developed over the last 15 years. More recently, OCT has been used for the intraoperative imaging of tumor margins in breast cancer and axillary lymph nodes providing a real time in-vivo assessment of the tissue morphology. Traditional OCT images are limited by only being able to observe morphological structures. As diagnostic medicine continues to push for earlier detection, one must develop functional imaging modalities that would detect molecular information in-vivo allowing a real-time microscopic analysis of the tissue specimen. A novel modality of OCT called magnetomotive-OCT (MM-OCT) has been developed by our group, employing an induced modulated magnetic field with a magnetic contrast agent to create the added contrast to structural OCT images. Modified protein microspheres with a BSA protein shell functionalized with RGD peptide sequences for targeting and an oil core have been designed and synthesized. Magnetic nanoparticles (Fe 3 O 4 ) and Nile Red dye have been encapsulated into its oil core. These microspheres have previously been demonstrated to target cancer cells by functionalizing them with a layer of RGD peptides and could be functionalized with monoclonal antibodies. Preliminary results show that these magnetic microspheres, which are 2.0-5.0 microns in size, are readily detectable under MM-OCT when embedded in a 5% agarose gel, in a 3-D scaffold of macrophage cells previously incubated with the microspheres, and when injected in-vivo into a tumor from an NMUcarcinogen rat animal model for breast cancer.
We report the first demonstration of OCT for the three-dimensional visualization of lymph node mo... more We report the first demonstration of OCT for the three-dimensional visualization of lymph node morphology and microarchitecture from human and carcinogen-induced rat mammary tumor specimens.
Optical coherence tomography (OCT) is an emerging biomedical imaging modality that has been devel... more Optical coherence tomography (OCT) is an emerging biomedical imaging modality that has been developed over the last 15 years. More recently, OCT has been used for the intraoperative imaging of tumor margins in breast cancer and axillary lymph nodes providing a real time in-vivo assessment of the tissue morphology. Traditional OCT images are limited by only being able to observe morphological structures. As diagnostic medicine continues to push for earlier detection, one must develop functional imaging modalities that would detect molecular information in-vivo allowing a real-time microscopic analysis of the tissue specimen. A novel modality of OCT called magnetomotive-OCT (MMOCT) has been developed by our group, employing an induced modulated magnetic field with a magnetic contrast agent to create the added contrast to structural OCT images. Modified protein microspheres with a BSA protein shell functionalized with RGD peptide sequences for targeting and an oil core have been designed and synthesized. Magnetic nanoparticles (Fe3O4) and Nile Red dye have been encapsulated into its oil core. These microspheres have previously been demonstrated to target cancer cells by functionalizing them with a layer of RGD peptides and could be functionalized with monoclonal antibodies. Preliminary results show that these magnetic microspheres, which are 2.0- 5.0 microns in size, are readily detectable under MM-OCT when embedded in a 5% agarose gel, in a 3-D scaffold of macrophage cells previously incubated with the microspheres, and when injected in-vivo into a tumor from an NMUcarcinogen rat animal model for breast cancer.
Proceedings of The National Academy of Sciences, 2005
We present an approach called pulsed multiline excitation (PME) for measurements of multicomponen... more We present an approach called pulsed multiline excitation (PME) for measurements of multicomponent, fluorescence species and demonstrate its application in capillary electrophoresis for DNA sequencing. To fully demonstrate the advantages of PME, a fluorescent dye set has been developed whose absorption maxima span virtually the entire visible spectrum. Unlike emission wavelength-dependent approaches for identifying fluorescent species, the removal of the spectral component in PME confers a number of advantages including higher and normalized signals from all dyes present in the assay, the elimination of spectral cross-talk between dyes, and higher signal collection efficiency. Base-calling is unambiguously determined once dye mobility corrections are made. These advantages translate into significantly enhanced signal quality as illustrated in the primary DNA sequencing data and provide a means for achieving accurate base-calling at lower reagent concentrations. fluorescent detection ͉ instrumentation PME Coaxial Beam Alignment. To ensure that the four pulsed laser beams were collimated and coaxial, and that the collection optics were transmitting maximum signal intensities for all four dyes, the following four-step alignment procedure was developed: (i) a knife edge test was applied to the beam waist of each laser to provide coincidence for x,y coordinates, (ii) beams were made to overlap in
, and enriched using a 0.5 T magnetic array. The resulting nanotube complexes show distinct NIR f... more , and enriched using a 0.5 T magnetic array. The resulting nanotube complexes show distinct NIR fluorescence, Raman scattering, and visible/NIR absorbance features, corresponding to the various nanotube species. AFM and cryo-TEM images show DNA-encapsulated complexes composed of a ∼3 nm particle attached to a carbon nanotube on one end. X-ray diffraction (XRD) and superconducting quantum interference device (SQUID) measurements reveal that the nanoparticles are primarily Fe 2 O 3 and superparamagnetic. The Fe 2 O 3 particle-enriched nanotube solution has a magnetic particle content of ∼35 wt %, a magnetization saturation of ∼56 emu/g, and a magnetic relaxation time scale ratio (T 1 /T 2 ) of approximately 12. These complexes have a longer spin−spin relaxation time (T 2 ∼ 164 ms) than typical ferromagnetic particles due to the smaller size of their magnetic component while still retaining SWNT optical signatures. Macrophage cells that engulf the DNA-wrapped complexes were imaged using magnetic resonance imaging (MRI) and NIR mapping, demonstrating that these multifunctional nanostructures could potentially be useful in multimodal biomedical imaging.
Fourier transform light scattering (FTLS) is a novel experimental approach that combines optical ... more Fourier transform light scattering (FTLS) is a novel experimental approach that combines optical microscopy, holography, and light scattering for studying inhomogeneous and dynamic media. In FTLS the optical phase and amplitude of a coherent image field are quantified and propagated numerically to the scattering plane. Because it detects all the scattered angles (spatial frequencies) simultaneously in each point of the image, FTLS can be regarded as the spatial equivalent of Fourier transform infrared spectroscopy, where all the temporal frequencies are detected at each moment in time.
As breast cancer screening rates increase, smaller and more numerous lesions are being identified... more As breast cancer screening rates increase, smaller and more numerous lesions are being identified earlier, leading to more breast-conserving surgical procedures. Achieving a clean surgical margin represents a technical challenge with important clinical implications. Optical coherence tomography (OCT) is introduced as an intraoperative high-resolution imaging technique that assesses surgical breast tumor margins by providing real-time microscopic images up to 2 mm beneath the tissue surface. In a study of 37 patients split between training and study groups, OCT images covering 1 cm 2 regions were acquired from surgical margins of lumpectomy specimens, registered with ink, and correlated with corresponding histologic sections. A 17-patient training set used to establish standard imaging protocols and OCT evaluation criteria showed that areas of higher scattering tissue with a heterogeneous pattern were indicative of tumor cells and tumor tissue in contrast to lower scattering adipocytes found in normal breast tissue. The remaining 20 patients were enrolled into the feasibility study. Of these lumpectomy specimens, 11 were identified with a positive or close surgical margin and 9 were identified with a negative margin under OCT. Based on histologic findings, 9 true positives, 9 true negatives, 2 false positives, and 0 false negatives were found, yielding a sensitivity of 100% and specificity of 82%. These results show the potential of OCT as a real-time method for intraoperative margin assessment in breast-conserving surgeries. [Cancer Res 2009;69(22):8790-6] Requests for reprints:
Purpose In this study, protein-shell microspheres filled with a suspension of iron oxide nanopart... more Purpose In this study, protein-shell microspheres filled with a suspension of iron oxide nanoparticles in oil are demonstrated as multimodal contrast agents in magnetic resonance imaging (MRI), magnetomotive optical coherence tomography (MM-OCT), and ultrasound imaging. The development, characterization, and use of multifunctional multimodal microspheres are described for targeted contrast and therapeutic applications. Procedures A preclinical rat model was used to demonstrate the feasibility of the multimodal multifunctional microspheres as contrast agents in ultrasound, MM-OCT and MRI. Microspheres were functionalized with the RGD peptide ligand, which is targeted to αvβ3 integrin receptors that are over-expressed in tumors and atherosclerotic lesions. Results These microspheres, which contain iron oxide nanoparticles in their cores, can be modulated externally using a magnetic field to create dynamic contrast in MM-OCT. With the presence of iron oxide nanoparticles, these agents also show significant negative T2 contrast in MRI. Using ultrasound B-mode imaging at a frequency of 30 MHz, a marked enhancement of scatter intensity from in vivo rat mammary tumor tissue was observed for these targeted protein microspheres. Conclusions Preliminary results demonstrate multimodal contrast-enhanced imaging of these functionalized microsphere agents with MRI, MM-OCT, ultrasound imaging, and fluorescence microscopy, including in vivo tracking of the dynamics of these microspheres in real-time using a high-frequency ultrasound imaging system. These targeted oil-filled protein microspheres with the capacity for high drug-delivery loads offer the potential for local delivery of lipophilic drugs under image guidance.
IEEE Engineering in Medicine and Biology Magazine, 2010
D uring breast-conserving surgeries, axillary lymph nodes draining from the primary tumor site ar... more D uring breast-conserving surgeries, axillary lymph nodes draining from the primary tumor site are removed for disease staging. Although a high number of lymph nodes are often resected during sentinel and lymph-node dissections, only a relatively small percentage of nodes are found to be metastatic, a fact that must be weighed against potential complications such as lymphedema. Without a real-time in vivo or in situ intraoperative imaging tool to provide a microscopic assessment of the nodes, postoperative paraffin section histopathological analysis currently remains the gold standard in assessing the status of lymph nodes. Optical coherence tomography (OCT), a high-resolution real-time microscopic optical-imaging technique previously used to image breast cancer tumor margins intraoperatively in humans and lymph-node microarchitecture in a rat animal model, is being presented for the intraoperative ex vivo imaging and assessment of axillary lymph nodes. OCT provides real-time microscopic images up to 2 mm beneath the tissue surface in axillary lymph nodes. Normal (13), reactive (1), and metastatic (3) lymph nodes from 17 human patients with breast cancer were imaged intraoperatively with OCT. These preliminary clinical studies have identified scattering changes in the cortex, relative to the capsule, which can be used to differentiate normal from reactive and metastatic nodes. These optical scattering changes are correlated with inflammatory and immunological changes observed in the follicles and germinal centers. These results suggest that intraoperative OCT has the potential to assess the real-time node status in situ, without having to physically resect and histologically process specimens to visualize microscopic features. Breast Cancer Breast cancer continues to affect a significant proportion of women, as 192,370 new cases of invasive breast cancer and 62,280 cases of ductal carcinoma in situ (DCIS) are expected in the United States during 2009, making it the most widely diagnosed cancer (26% of new cases) in women [1]. The number of deaths attributed to breast cancer (40,610 expected in 2009-second only to lung cancer) has started to decrease over the last few years, largely attributed to the effectiveness of breast-cancer screening [1]
Since its introduction, optical coherence tomography ͑OCT͒ technology has advanced from the labor... more Since its introduction, optical coherence tomography ͑OCT͒ technology has advanced from the laboratory bench to the clinic and back again. Arising from the fields of low coherence interferometry and optical time-and frequency-domain reflectometry, OCT was initially demonstrated for retinal imaging and followed a unique path to commercialization for clinical use. Concurrently, significant technological advances were brought about from within the research community, including improved laser sources, beam delivery instruments, and detection schemes. While many of these technologies improved retinal imaging, they also allowed for the application of OCT to many new clinical areas. As a result, OCT has been clinically demonstrated in a diverse set of medical and surgical specialties, including gastroenterology, dermatology, cardiology, and oncology, among others. The lessons learned in the clinic are currently spurring a new set of advances in the laboratory that will again expand the clinical use of OCT by adding molecular sensitivity, improving image quality, and increasing acquisition speeds. This continuous cycle of laboratory development and clinical application has allowed the OCT technology to grow at a rapid rate and represents a unique model for the translation of biomedical optics to the patient bedside. This work presents a brief history of OCT development, reviews current clinical applications, discusses some clinical translation challenges, and reviews laboratory developments poised for future clinical application.
Since its introduction, optical coherence tomography ͑OCT͒ technology has advanced from the labor... more Since its introduction, optical coherence tomography ͑OCT͒ technology has advanced from the laboratory bench to the clinic and back again. Arising from the fields of low coherence interferometry and optical time-and frequency-domain reflectometry, OCT was initially demonstrated for retinal imaging and followed a unique path to commercialization for clinical use. Concurrently, significant technological advances were brought about from within the research community, including improved laser sources, beam delivery instruments, and detection schemes. While many of these technologies improved retinal imaging, they also allowed for the application of OCT to many new clinical areas. As a result, OCT has been clinically demonstrated in a diverse set of medical and surgical specialties, including gastroenterology, dermatology, cardiology, and oncology, among others. The lessons learned in the clinic are currently spurring a new set of advances in the laboratory that will again expand the clinical use of OCT by adding molecular sensitivity, improving image quality, and increasing acquisition speeds. This continuous cycle of laboratory development and clinical application has allowed the OCT technology to grow at a rapid rate and represents a unique model for the translation of biomedical optics to the patient bedside. This work presents a brief history of OCT development, reviews current clinical applications, discusses some clinical translation challenges, and reviews laboratory developments poised for future clinical application.
As breast cancer screening rates increase, smaller and more numerous lesions are being identified... more As breast cancer screening rates increase, smaller and more numerous lesions are being identified earlier, leading to more breast-conserving surgical procedures. Achieving a clean surgical margin represents a technical challenge with important clinical implications. Optical coherence tomography (OCT) is introduced as an intraoperative high-resolution imaging technique that assesses surgical breast tumor margins by providing real-time microscopic images up to 2 mm beneath the tissue surface. In a study of 37 patients split between training and study groups, OCT images covering 1 cm 2 regions were acquired from surgical margins of lumpectomy specimens, registered with ink, and correlated with corresponding histologic sections. A 17-patient training set used to establish standard imaging protocols and OCT evaluation criteria showed that areas of higher scattering tissue with a heterogeneous pattern were indicative of tumor cells and tumor tissue in contrast to lower scattering adipocytes found in normal breast tissue. The remaining 20 patients were enrolled into the feasibility study. Of these lumpectomy specimens, 11 were identified with a positive or close surgical margin and 9 were identified with a negative margin under OCT. Based on histologic findings, 9 true positives, 9 true negatives, 2 false positives, and 0 false negatives were found, yielding a sensitivity of 100% and specificity of 82%. These results show the potential of OCT as a real-time method for intraoperative margin assessment in breast-conserving surgeries. [Cancer Res 2009;69(22):8790-6] Requests for reprints:
We employ Fourier-transform light scattering, a technique recently developed in our laboratory, t... more We employ Fourier-transform light scattering, a technique recently developed in our laboratory, to study the scattering properties of rat organ tissues. Using the knowledge of the complex field associated with highresolution microscope images of tissue slices, we extracted the scattering mean-free path l s and anisotropy factor g, which characterize the bulk tissue for three different rat organs. This "bottom up" approach to measuring tissue scattering parameters allows for predicting the wave transport phenomena within the organ of interest at a multitude of scales-from organelle to organ level.
Uploads
Papers by Freddy Nguyen