Papers by Agnieszka Wolnicka-Glubisz
Journal of cancer research and clinical oncology, Apr 24, 2024
International Journal of Molecular Sciences
Melatonin (N-acetyl-5-methoxytryptamine, MEL), its kynurenic (N1-acetyl-N2-formyl-5-methoxykynure... more Melatonin (N-acetyl-5-methoxytryptamine, MEL), its kynurenic (N1-acetyl-N2-formyl-5-methoxykynurenine, AFMK) and indolic derivatives (6-hydroxymelatonin, 6(OH)MEL and 5-methoxytryptamine, 5-MT) are endogenously produced in human epidermis. Melatonin, produced by the pineal gland, brain and peripheral organs, displays a diversity of physiological functions including anti-inflammatory, immunomodulatory, and anti-tumor capacities. Herein, we assessed their regulatory effect on melanogenesis using amelanotic (A375, Sk-Mel-28) and highly pigmented (MNT-1, melanotic) human melanoma cell lines. We discovered that subjected compounds decrease the downstream pathway of melanin synthesis by causing a significant drop of cyclic adenosine monophosphate (cAMP) level, the microphthalmia-associated transcription factor (MITF) and resultant collapse of tyrosinase (TYR) activity, and melanin content comparatively to N-phenylthiourea (PTU, a positive control). We observed a reduction in pigment in me...
Postepy biochemii, Feb 23, 2021
Photochemistry and Photobiology, May 1, 2023
An acetylated riboflavin derivative, 3‐methyl‐tetraacetyl riboflavin (3MeTARF), is a compound wit... more An acetylated riboflavin derivative, 3‐methyl‐tetraacetyl riboflavin (3MeTARF), is a compound with high photostability and photophysical properties similar to riboflavin, including the ability to photogenerate singlet oxygen. In the present study, we compared the effects of irradiation on A431 cancer cells with blue LED light (438 nm) in the presence of 3MeTARF and riboflavin on MAPK phosphorylation, apoptosis, caspase 3/7 activation and PARP cleavage. We observed that photogenerated oxidative stress in this reaction activates MAPK by increasing phosphorylation of p38 and JNK proteins. Preincubation of cells with inhibitors specific for phosphorylation of p38 and JNK proteins (SB203580, SP600125), respectively, results in decreased caspase 3/7 activation and PARP cleavage. We showed that the tetraacetyl derivative more effectively activates MAPK and skin cancer cell death compared to riboflavin. These data, together with results of our previous study, support the hypothesis that 3MeTARF, of riboflavin, might be more useful and desirable as a compound for use in photodynamic oxidation processes, including its therapeutic potential.
Biophysical Chemistry, Sep 1, 2004
In this study, the effects of chlorpromazine (CPZ) on lipid order and motion in saturated (DMPC, ... more In this study, the effects of chlorpromazine (CPZ) on lipid order and motion in saturated (DMPC, DMPG) and unsaturated (SOPC) liposome membranes were investigated by electron spin resonance (ESR) spin labeling technique. We have shown that above the main phase transition temperature of membrane lipids (T(M)), CPZ slightly increases lipid order in membranes without cholesterol, whereas below T(M) it has a strong opposite effect. Addition of 30 mol% of cholesterol into DMPC and SOPC membranes changes significantly the CPZ effects both above and below T(M). Additionally, above T(M), the ordering effect of CPZ on pure SOPC membrane is stronger at pH 7.4 than at pH 9.0, whereas below T(M), as well as in the presence of cholesterol, pH does not seem to play a role in CPZ effect on both membranes. Because of the strong influence of membrane composition on CPZ effect on membranes, the use of cholesterol as a marker of CPZ photosensitized reactions has been discussed.
Contemporary Oncology/Współczesna Onkologia, Dec 12, 2007
Journal of carcinogenesis & mutagenesis, 2014
Metabolites
Melatonin (N-acetyl-5-methoxytryptamine) is recognized as an effective antioxidant produced by th... more Melatonin (N-acetyl-5-methoxytryptamine) is recognized as an effective antioxidant produced by the pineal gland, brain and peripheral organs, which also has anti-inflammatory, immunomodulatory, and anti-tumour capacities. Melatonin has been reported as a substance that counteracts ultraviolet radiation B (UVB)-induced intracellular disturbances. Nevertheless, the mechanistic actions of related molecules including its kynurenic derivatives (N1-acetyl-N2-formyl-5-methoxykynurenine (AFMK)), its indolic derivatives (6-hydroxymelatonin (6(OH)MEL) and 5-methoxytryptamine (5-MT)) and its precursor N-acetylserotonin (NAS) are only poorly understood. Herein, we treated human epidermal keratinocytes with UVB and assessed the protective effect of the studied substances in terms of the maintenance of mitochondrial function or their radical scavenging capacity. Our results show that UVB caused the significant elevation of catalase (CAT) and superoxide dismutase (Mn-SOD), the dissipation of mitoc...
Photochemistry and Photobiology, Jul 4, 2022
Curcumin is a plant‐derived yellow‐orange compound widely used as a spice, dye and food additive.... more Curcumin is a plant‐derived yellow‐orange compound widely used as a spice, dye and food additive. It is also believed to have therapeutic effects against different disorders. On the other hand, there are data showing its phototoxicity against bacteria, fungi and various mammalian cells. Since the mechanism of its phototoxic action is not fully understood, we investigated here the phototoxic potential of curcumin in liposomal model membranes and in HaCaT cells. First, detection of singlet oxygen (1O2) luminescence proved that curcumin generates 1O2 upon blue light irradiation in organic solvent and in liposomes. Then, HPLC‐EC(Hg) measurements revealed that liposomal and cellular cholesterol is oxidized by 1O2 photogenerated by curcumin. Enrichment of liposome membranes with curcumin significantly increased the oxygen photo‐consumption rate compared to the control liposomes as determined by EPR oximetry. Cytotoxicity measurements, mitochondrial membrane potential analyses and protein hydroperoxides detection confirmed strong phototoxic effects of curcumin in irradiated HaCaT cells. These data show that since curcumin is advertised as a valuable dietary supplement, or a component of cosmetics for topical use, caution should be recommended especially when skin is exposed to light.
Antioxidants
Curcumin, a natural polyphenol widely used as a spice, colorant and food additive, has been shown... more Curcumin, a natural polyphenol widely used as a spice, colorant and food additive, has been shown to have therapeutic effects against different disorders, mostly due to its anti-oxidant properties. Curcumin also reduces the efficiency of melanin synthesis and affects cell membranes. However, curcumin can act as a pro-oxidant when blue light is applied, since upon illumination it can generate singlet oxygen. Our review aims to describe this dual role of curcumin from a biophysical perspective, bearing in mind its concentration, bioavailability-enhancing modifications and membrane interactions, as well as environmental conditions such as light. In low concentrations and without irradiation, curcumin shows positive effects and can be recommended as a beneficial food supplement. On the other hand, when used in excess or irradiated, curcumin can be toxic. Therefore, numerous attempts have been undertaken to test curcumin as a potential photosensitizer in photodynamic therapy (PDT). At th...
Journal of Investigative Dermatology, 2004
Photochemistry and Photobiology
Cancers
Vemurafenib and dabrafenib are BRAF kinase inhibitors (BRAFi) used for the treatment of patients ... more Vemurafenib and dabrafenib are BRAF kinase inhibitors (BRAFi) used for the treatment of patients with melanoma carrying the V600E BRAF mutation. However, melanoma cells develop resistance to both drugs when used as monotherapy. Therefore, mechanisms of drug resistance are investigated, and new molecular targets are sought that could completely inhibit melanoma progression. Since receptor-interacting protein kinase (RIPK4) probably functions as an oncogene in melanoma and its structure is similar to the BRAF protein, we analyzed the impact of vemurafenib and dabrafenib on RIPK4 in melanomas. The in silico study confirmed the high similarity of BRAF kinase domains to the RIPK4 protein at both the sequence and structural levels and suggests that BRAFi could directly bind to RIPK4 even more strongly than to ATP. Furthermore, BRAFi inhibited ERK1/2 activity and lowered RIPK4 protein levels in BRAF-mutated melanoma cells (A375 and WM266.4), while in wild-type BRAF cells (BLM and LoVo), bo...
Photochemistry and Photobiology
susceptibility to UV induced cutaneous malignant melanoma in a mouse model
Uploads
Papers by Agnieszka Wolnicka-Glubisz