Background and purposeMicrotubule defects are a common feature in several neurodegenerative disor... more Background and purposeMicrotubule defects are a common feature in several neurodegenerative disorders, including hereditary spastic paraplegia. The most frequent form of hereditary spastic paraplegia is caused by mutations in the SPG4/SPAST gene, encoding the microtubule severing enzyme spastin. To date, there is no effective therapy available but spastin‐enhancing therapeutic approaches are emerging; thus prognostic and predictive biomarkers are urgently required.MethodsAn automated, simple, fast and non‐invasive cell imaging‐based method was developed to quantify microtubule cytoskeleton organization changes in lymphoblastoid cells and peripheral blood mononuclear cells.ResultsIt was observed that lymphoblastoid cells and peripheral blood mononuclear cells from individuals affected by SPG4‐hereditary spastic paraplegia show a polarized microtubule cytoskeleton organization. In a pilot study on freshly isolated peripheral blood mononuclear cells, our method discriminates SPG4‐hered...
Hereditary Spastic Paraplegia (HSP) is a neurodegenerative disease most commonly caused by autoso... more Hereditary Spastic Paraplegia (HSP) is a neurodegenerative disease most commonly caused by autosomal dominant mutations in the SPG4 gene encoding the microtubule-severing protein spastin. We hypothesise that SPG4-HSP is attributable to reduced spastin function because of haploinsufficiency; thus, therapeutic approaches which elevate levels of the wild-type spastin allele may be an effective therapy. However, until now, how spastin levels are regulated is largely unknown. Here, we show that the kinase HIPK2 regulates spastin protein levels in proliferating cells, in differentiated neurons and in vivo. Our work reveals that HIPK2-mediated phosphorylation of spastin at S268 inhibits spastin K48-poly-ubiquitination at K554 and prevents its neddylation-dependent proteasomal degradation. In a spastin RNAi neuronal cell model, overexpression of HIPK2, or inhibition of neddylation, restores spastin levels and rescues neurite defects. Notably, we demonstrate that spastin levels can be restor...
Centrosomal p53 has been described for three decades but its role is still unclear. We previously... more Centrosomal p53 has been described for three decades but its role is still unclear. We previously reported that, in proliferating human cells, p53 transiently moves to centrosomes at each mitosis. Such p53 mitotic centrosome localization (p53-MCL) occurs independently from DNA damage but requires ATM-mediated p53Ser15 phosphorylation (p53Ser15P) on discrete cytoplasmic p53 foci that, through MT dynamics, move to centrosomes during the mitotic spindle formation. Here, we show that inhibition of p53-MCL, obtained by p53 depletion or selective impairment of p53 centrosomal localization, induces centrosome fragmentation in human nontransformed cells. In contrast, tumor cells or mouse cells tolerate p53 depletion, as expected, and p53-MCL inhibition. Such tumor- and species-specific behavior of centrosomal p53 resembles that of the recently identified sensor of centrosome-loss, whose activation triggers the mitotic surveillance pathway in human nontransformed cells but not in tumor cells...
Histones are constitutive components of nucleosomes and key regulators of chromatin structure. We... more Histones are constitutive components of nucleosomes and key regulators of chromatin structure. We previously observed that an extrachromosomal histone H2B (ecH2B) localizes at the intercellular bridge (ICB) connecting the two daughter cells during cytokinesis independently of DNA and RNA. Here, we show that ecH2B binds and colocalizes with CHMP4B, a key component of the ESCRT-III machinery responsible for abscission, the final step of cell division. Abscission requires the formation of an abscission site at the ICB where the ESCRT-III complex organizes into narrowing cortical helices that drive the physical separation of sibling cells. ecH2B depletion does not prevent membrane cleavage rather results in abscission delay and accumulation of abnormally long and thin ICBs. In the absence of ecH2B, CHMP4B and other components of the fission machinery, such as IST1 and Spastin, are recruited to the ICB and localize at the midbody. However, in the late stage of abscission, these fission f...
Abscission is the final step of cell division, mediating the physical separation of the two daugh... more Abscission is the final step of cell division, mediating the physical separation of the two daughter cells. A key player in this process is the microtubule-severing enzyme spastin that localizes at the midbody where its activity is crucial to cut microtubules and culminate the cytokinesis. Recently, we demonstrated that HIPK2, a multifunctional kinase involved in several cellular pathways, contributes to abscission and prevents tetraploidization. Here, we show that HIPK2 binds and phosphorylates spastin at serine 268. During cytokinesis, the midbody-localized spastin is phosphorylated at S268 in HIPK2-proficient cells. In contrast, no spastin is detectable at the midbody in HIPK2-depleted cells. The non-phosphorylatable spastin-S268A mutant does not localize at the midbody and cannot rescue HIPK2-depleted cells from abscission defects. In contrast, the phosphomimetic spastin-S268D mutant localizes at the midbody and restores successful abscission in the HIPK2-depleted cells. These r...
Cytokinesis, the final phase of cell division, is necessary to form two distinct daughter cells w... more Cytokinesis, the final phase of cell division, is necessary to form two distinct daughter cells with correct distribution of genomic and cytoplasmic materials. Its failure provokes genetically unstable states, such as tetraploidization and polyploidization, which can contribute to tumorigenesis. Aurora-B kinase controls multiple cytokinetic events, from chromosome condensation to abscission when the midbody is severed. We have previously shown that HIPK2, a kinase involved in DNA damage response and development, localizes at the midbody and contributes to abscission by phosphorylating extrachromosomal histone H2B at Ser14. Of relevance, HIPK2-defective cells do not phosphorylate H2B and do not successfully complete cytokinesis leading to accumulation of binucleated cells, chromosomal instability, and increased tumorigenicity. However, how HIPK2 and H2B are recruited to the midbody during cytokinesis is still unknown. Here, we show that regardless of their direct (H2B) and indirect (...
The cyclin-dependent kinase-like 5 (CDKL5) gene has been associated with rare neurodevelopmental ... more The cyclin-dependent kinase-like 5 (CDKL5) gene has been associated with rare neurodevelopmental disorders characterized by the early onset of seizures and intellectual disability. The CDKL5 protein is widely expressed in most tissues and cells with both nuclear and cytoplasmic localization. In post-mitotic neurons CDKL5 is mainly involved in dendritic arborization, axon outgrowth, and spine formation while in proliferating cells its function is still largely unknown. Here, we report that CDKL5 localizes at the centrosome and at the midbody in proliferating cells. Acute inactivation of CDKL5 by RNA interference (RNAi) leads to multipolar spindle formation, cytokinesis failure and centrosome accumulation. At the molecular level, we observed that, among the several midbody components we analyzed, midbodies of CDKL5-depleted cells were devoid of HIPK2 and its cytokinesis target, the extrachromosomal histone H2B phosphorylated at S14. Of relevance, expression of the phosphomimetic mutan...
The mitotic spindle assembly checkpoint (SAC) is an essential control system of the cell cycle th... more The mitotic spindle assembly checkpoint (SAC) is an essential control system of the cell cycle that contributes to mantain the genomic stability of eukaryotic cells. SAC genes expression is often deregulated in cancer cells, leading to checkpoint impairment and chromosome instability. The mechanisms responsible for the transcriptional regulation and deregulation of these genes are still largely unknown. Herein we identify the nonhistone architectural nuclear proteins High Mobility Group A1 (HMGA1), whose overexpression is a feature of several human malignancies and has a key role in cancer progression, as transcriptional regulators of SAC genes expression. In particular, we show that HMGA1 proteins are able to increase the expression of the SAC genes Ttk, Mad2l1, Bub1 and Bub1b, binding to their promoter regions. Consistently, HMGA1-depletion induces SAC genes downregulation associated to several mitotic defects. In particular, we observed a high number of unaligned chromosomes in m...
HIPK2, a cell fate decision kinase inactivated in several human cancers, is thought to exert its ... more HIPK2, a cell fate decision kinase inactivated in several human cancers, is thought to exert its oncosuppressing activity through its p53-dependent and -independent apoptotic function. However, a HIPK2 role in cell proliferation has also been described. In particular, HIPK2 is required to complete cytokinesis and impaired HIPK2 expression results in cytokinesis failure and tetraploidization. Since tetraploidy may yield to aneuploidy and chromosomal instability (CIN), we asked whether unscheduled tetraploidy caused by loss of HIPK2 might contribute to tumorigenicity. Here, we show that, compared to Hipk2+/+ mouse embryo fibroblasts (MEFs), hipk2-null MEFs accumulate subtetraploid karyotypes and develop CIN. Accumulation of these defects inhibits proliferation and spontaneous immortalization of primary MEFs whereas increases tumorigenicity when MEFs are transformed by E1A and Harvey-Ras oncogenes. Upon mouse injection, E1A/Ras-transformed hipk2-null MEFs generate tumors with genetic a...
Background and purposeMicrotubule defects are a common feature in several neurodegenerative disor... more Background and purposeMicrotubule defects are a common feature in several neurodegenerative disorders, including hereditary spastic paraplegia. The most frequent form of hereditary spastic paraplegia is caused by mutations in the SPG4/SPAST gene, encoding the microtubule severing enzyme spastin. To date, there is no effective therapy available but spastin‐enhancing therapeutic approaches are emerging; thus prognostic and predictive biomarkers are urgently required.MethodsAn automated, simple, fast and non‐invasive cell imaging‐based method was developed to quantify microtubule cytoskeleton organization changes in lymphoblastoid cells and peripheral blood mononuclear cells.ResultsIt was observed that lymphoblastoid cells and peripheral blood mononuclear cells from individuals affected by SPG4‐hereditary spastic paraplegia show a polarized microtubule cytoskeleton organization. In a pilot study on freshly isolated peripheral blood mononuclear cells, our method discriminates SPG4‐hered...
Hereditary Spastic Paraplegia (HSP) is a neurodegenerative disease most commonly caused by autoso... more Hereditary Spastic Paraplegia (HSP) is a neurodegenerative disease most commonly caused by autosomal dominant mutations in the SPG4 gene encoding the microtubule-severing protein spastin. We hypothesise that SPG4-HSP is attributable to reduced spastin function because of haploinsufficiency; thus, therapeutic approaches which elevate levels of the wild-type spastin allele may be an effective therapy. However, until now, how spastin levels are regulated is largely unknown. Here, we show that the kinase HIPK2 regulates spastin protein levels in proliferating cells, in differentiated neurons and in vivo. Our work reveals that HIPK2-mediated phosphorylation of spastin at S268 inhibits spastin K48-poly-ubiquitination at K554 and prevents its neddylation-dependent proteasomal degradation. In a spastin RNAi neuronal cell model, overexpression of HIPK2, or inhibition of neddylation, restores spastin levels and rescues neurite defects. Notably, we demonstrate that spastin levels can be restor...
Centrosomal p53 has been described for three decades but its role is still unclear. We previously... more Centrosomal p53 has been described for three decades but its role is still unclear. We previously reported that, in proliferating human cells, p53 transiently moves to centrosomes at each mitosis. Such p53 mitotic centrosome localization (p53-MCL) occurs independently from DNA damage but requires ATM-mediated p53Ser15 phosphorylation (p53Ser15P) on discrete cytoplasmic p53 foci that, through MT dynamics, move to centrosomes during the mitotic spindle formation. Here, we show that inhibition of p53-MCL, obtained by p53 depletion or selective impairment of p53 centrosomal localization, induces centrosome fragmentation in human nontransformed cells. In contrast, tumor cells or mouse cells tolerate p53 depletion, as expected, and p53-MCL inhibition. Such tumor- and species-specific behavior of centrosomal p53 resembles that of the recently identified sensor of centrosome-loss, whose activation triggers the mitotic surveillance pathway in human nontransformed cells but not in tumor cells...
Histones are constitutive components of nucleosomes and key regulators of chromatin structure. We... more Histones are constitutive components of nucleosomes and key regulators of chromatin structure. We previously observed that an extrachromosomal histone H2B (ecH2B) localizes at the intercellular bridge (ICB) connecting the two daughter cells during cytokinesis independently of DNA and RNA. Here, we show that ecH2B binds and colocalizes with CHMP4B, a key component of the ESCRT-III machinery responsible for abscission, the final step of cell division. Abscission requires the formation of an abscission site at the ICB where the ESCRT-III complex organizes into narrowing cortical helices that drive the physical separation of sibling cells. ecH2B depletion does not prevent membrane cleavage rather results in abscission delay and accumulation of abnormally long and thin ICBs. In the absence of ecH2B, CHMP4B and other components of the fission machinery, such as IST1 and Spastin, are recruited to the ICB and localize at the midbody. However, in the late stage of abscission, these fission f...
Abscission is the final step of cell division, mediating the physical separation of the two daugh... more Abscission is the final step of cell division, mediating the physical separation of the two daughter cells. A key player in this process is the microtubule-severing enzyme spastin that localizes at the midbody where its activity is crucial to cut microtubules and culminate the cytokinesis. Recently, we demonstrated that HIPK2, a multifunctional kinase involved in several cellular pathways, contributes to abscission and prevents tetraploidization. Here, we show that HIPK2 binds and phosphorylates spastin at serine 268. During cytokinesis, the midbody-localized spastin is phosphorylated at S268 in HIPK2-proficient cells. In contrast, no spastin is detectable at the midbody in HIPK2-depleted cells. The non-phosphorylatable spastin-S268A mutant does not localize at the midbody and cannot rescue HIPK2-depleted cells from abscission defects. In contrast, the phosphomimetic spastin-S268D mutant localizes at the midbody and restores successful abscission in the HIPK2-depleted cells. These r...
Cytokinesis, the final phase of cell division, is necessary to form two distinct daughter cells w... more Cytokinesis, the final phase of cell division, is necessary to form two distinct daughter cells with correct distribution of genomic and cytoplasmic materials. Its failure provokes genetically unstable states, such as tetraploidization and polyploidization, which can contribute to tumorigenesis. Aurora-B kinase controls multiple cytokinetic events, from chromosome condensation to abscission when the midbody is severed. We have previously shown that HIPK2, a kinase involved in DNA damage response and development, localizes at the midbody and contributes to abscission by phosphorylating extrachromosomal histone H2B at Ser14. Of relevance, HIPK2-defective cells do not phosphorylate H2B and do not successfully complete cytokinesis leading to accumulation of binucleated cells, chromosomal instability, and increased tumorigenicity. However, how HIPK2 and H2B are recruited to the midbody during cytokinesis is still unknown. Here, we show that regardless of their direct (H2B) and indirect (...
The cyclin-dependent kinase-like 5 (CDKL5) gene has been associated with rare neurodevelopmental ... more The cyclin-dependent kinase-like 5 (CDKL5) gene has been associated with rare neurodevelopmental disorders characterized by the early onset of seizures and intellectual disability. The CDKL5 protein is widely expressed in most tissues and cells with both nuclear and cytoplasmic localization. In post-mitotic neurons CDKL5 is mainly involved in dendritic arborization, axon outgrowth, and spine formation while in proliferating cells its function is still largely unknown. Here, we report that CDKL5 localizes at the centrosome and at the midbody in proliferating cells. Acute inactivation of CDKL5 by RNA interference (RNAi) leads to multipolar spindle formation, cytokinesis failure and centrosome accumulation. At the molecular level, we observed that, among the several midbody components we analyzed, midbodies of CDKL5-depleted cells were devoid of HIPK2 and its cytokinesis target, the extrachromosomal histone H2B phosphorylated at S14. Of relevance, expression of the phosphomimetic mutan...
The mitotic spindle assembly checkpoint (SAC) is an essential control system of the cell cycle th... more The mitotic spindle assembly checkpoint (SAC) is an essential control system of the cell cycle that contributes to mantain the genomic stability of eukaryotic cells. SAC genes expression is often deregulated in cancer cells, leading to checkpoint impairment and chromosome instability. The mechanisms responsible for the transcriptional regulation and deregulation of these genes are still largely unknown. Herein we identify the nonhistone architectural nuclear proteins High Mobility Group A1 (HMGA1), whose overexpression is a feature of several human malignancies and has a key role in cancer progression, as transcriptional regulators of SAC genes expression. In particular, we show that HMGA1 proteins are able to increase the expression of the SAC genes Ttk, Mad2l1, Bub1 and Bub1b, binding to their promoter regions. Consistently, HMGA1-depletion induces SAC genes downregulation associated to several mitotic defects. In particular, we observed a high number of unaligned chromosomes in m...
HIPK2, a cell fate decision kinase inactivated in several human cancers, is thought to exert its ... more HIPK2, a cell fate decision kinase inactivated in several human cancers, is thought to exert its oncosuppressing activity through its p53-dependent and -independent apoptotic function. However, a HIPK2 role in cell proliferation has also been described. In particular, HIPK2 is required to complete cytokinesis and impaired HIPK2 expression results in cytokinesis failure and tetraploidization. Since tetraploidy may yield to aneuploidy and chromosomal instability (CIN), we asked whether unscheduled tetraploidy caused by loss of HIPK2 might contribute to tumorigenicity. Here, we show that, compared to Hipk2+/+ mouse embryo fibroblasts (MEFs), hipk2-null MEFs accumulate subtetraploid karyotypes and develop CIN. Accumulation of these defects inhibits proliferation and spontaneous immortalization of primary MEFs whereas increases tumorigenicity when MEFs are transformed by E1A and Harvey-Ras oncogenes. Upon mouse injection, E1A/Ras-transformed hipk2-null MEFs generate tumors with genetic a...
Uploads
Papers by Davide Valente