Papers by Jean-jacques Berthelier
Journal of Geophysical Research, Jun 1, 2011
Plasma density variations observed aboard the DEMETER satellite in the topside ionospheric F laye... more Plasma density variations observed aboard the DEMETER satellite in the topside ionospheric F layer are analyzed in relation to high-frequency transmitter operations. The main interest is the high-latitude region. One hundred cases with operating and nonoperating High Frequency Active Auroral Research Program HF transmitter during day and night are examined. It is found that most large-scale variations can be attributed to the presence of the main ionospheric trough and that such natural variations complicate the detection of HF transmitter effects on a case-by-case basis. From statistics, no correlation between the HF transmissions and the presence of the irregularities has been established. A comparison of our observations with two recent works on electron density ducts created by HF transmitters and detected by DEMETER shows that in those works the main ionospheric trough is the major factor in density variations, and it is not clear how to distinguish density variations created by the HF heater from natural variations in such cases. Finally, possible experimental techniques for duct formation by HF heaters are discussed.
Natural Hazards and Earth System Sciences, Oct 16, 2008
In our earlier papers we have found the effect of VLF transmitter signal depression over epicente... more In our earlier papers we have found the effect of VLF transmitter signal depression over epicenters of the large earthquakes from observation on the French DEME-TER satellite that can be considered as new method of global diagnostics of seismic influence on the ionosphere. At present paper we investigate a possibility VLF signalionospheric turbulence interaction using additional characteristic of VLF signal-spectrum broadening. This characteristic is important for estimation of the interaction type: linear or nonlinear scattering. Our main results are the following:-There are two zones of increased spectrum broadening, which are centered near magnetic latitudes =±10 • and =±40 •. Basing on the previous case study research and ground ionosonde registrations, probably it is evidence of nonlinear (active) scattering of VLF signal on the ionospheric turbulence. However occurrence rate of spectrum broadening in the middle-latitude area is higher than in the near-equatorial zone (∼15-20% in comparison with ∼100% in former area) that is probably coincides with the rate of ionospheric turbulence.-From two years statistics of observation in the selected 3 low-latitude regions and 1 middle-latitude region inside reception area of VLF signal from NWC transmitter we find a correlation of spectrum broadening neither with ion-cyclotron noise (f =150-500 Hz), which
Annales Geophysicae, May 4, 2009
We present observations of a discrete southward propagating arc which appeared in the mid-night s... more We present observations of a discrete southward propagating arc which appeared in the mid-night sector at latitudes equatorward of main substorm activity. The arc observations were made simultaneously by the ALFA (Auroral Light Fine Analysis) optical camera, the SuperDARN-CUTLASS HF radar and the Demeter satellite during a coordinated multi-instrumental campaign conducted at the KEOPS/ESRANGE site in December 2006. The Super-DARN HF signal which is often lost in the regions of strong electron precipitation yields in our case clear backscatter from an isolated arc of weak intensity. Consequently we are able to study arc dynamics, the formation of meso-scale irregularities of the electron density along the arc, compare the arc motion with the convection of surrounding plasma and discuss the contribution of ionospheric ions in the arc erosion and its propagation.
The segmented Langmuir probe (SLP) has been recently proposed by one of the authors (Lebreton, 20... more The segmented Langmuir probe (SLP) has been recently proposed by one of the authors (Lebreton, 2002) as an instrument for the newly prepared ionospheric mission DEMETER to determine the plasma bulk velocity in addition to the electron density and the temperature that are routinely deduced from the Langmuir probe data. The basic idea of the SLP concept is to measure the current distribution on the probe surface by means of the individual segments and then to use the current anisotropy to estimate the amplitude and the direction of the plasma bulk speed in the probe frame. With the aim to evaluate the performances of such a probe we have developed a numerical particle in cell (PIC) model which provides a tool to calculate the current collection by spherical probe and its segments. This model is based on the simultaneous determination of the charge densities in the near-probe sheath and on the surface of the probe which are then used to compute the potential distribution in the sheath ...
Space Science Reviews, 2018
Active ionospheric experiments using high-power, high-frequency transmitters, "heaters", to study... more Active ionospheric experiments using high-power, high-frequency transmitters, "heaters", to study plasma processes in the ionosphere and magnetosphere continue to provide new insights into understanding plasma and geophysical proceses. This review describes the heating facilities, past and present, and discusses scientific results from these facilities and associated space missions. Phenomena that have been observed with these facilities are reviewed along with theoretical explanations that have been proposed or are commonly accepted. Gaps or uncertainties in understanding of heating initiated phenomena are discussed together with proposed science questions to be addressed in the future. Suggestions for improvements and additions to existing facilities are presented including important satellite missions which are necessary to answer the outstanding questions in this field. Keywords. Active experiments. Ionospheric heating. HAARP. SURA. Arecibo. ULF waves. Ionospheric feedback instability. VLF waves. Ionospheric irregularities. Plasma instabilities. Wave-particle interactions. Artificial aurora. EISCAT. Ionosphere. DEMETER. Ionospheric resonator.
The Astrophysical Journal, 2016
Comets considered to be pristine objects contain key information about the early formation of the... more Comets considered to be pristine objects contain key information about the early formation of the solar system. Their volatile components can provide clues about the origin and evolution of gases and ices in the comets. Measurements with ROSINA/RTOF at 67P/Churyumov-Gerasimenko have now allowed, for the first time, a direct in situ high-time resolution measurement of the most abundant cometary molecules originating directly from a comet's nucleus over a long time-period, much longer than any previous measurements at a close distance to a comet between 3.1 and 2.3 au. We determine the local densities of H 2 O, CO 2 , and CO, and investigate their variabilities.
Astronomy & Astrophysics, 2017
Context. Measurements of isotopic abundances in cometary ices are key to understanding and recons... more Context. Measurements of isotopic abundances in cometary ices are key to understanding and reconstructing the history and origin of material in the solar system. Comets are considered the most pristine material in the solar system. Isotopic fractionation (enrichment of an isotope in a molecule compared to the initial abundance) is sensitive to environmental conditions at the time of comet formation. Therefore, measurements of cometary isotope ratios can provide information on the composition, density, temperature, and radiation during formation of the molecules, during the chemical evolution from the presolar cloud to the protosolar nebula, and the protoplanetary disk before accretion in solid bodies. Most isotopic abundances of 12 C/ 13 C and 16 O/ 18 O in comets to date are in agreement with terrestrial abundances. Prior to the Rosetta mission, measurements of 12 C/ 13 C in comets were only available for HCN, CN, and C 2 and for 16 O/ 18 O in H 2 O. Measurements of 12 C/ 13 C in comets were only available from ground based observations and remote sensing, while 16 O/ 18 O in H 2 O had also been measured in-situ. To date, no measurements of the CO 2 isotopologues in comets were available. Aims. This paper presents the first measurements of the CO 2 isotopologues in the coma of 67P/Churyumov-Gerasimenko (67P). Methods. We analyzed measurements taken by the Double Focusing Mass Spectrometer (DFMS) of the ROSINA experiment on board the ESA spacecraft Rosetta in the coma of 67P. Results. The CO 2 isotopologues results for 67P are: 12 C/ 13 C = 84 ± 4, 16 O/ 18 O = 494 ± 8, and 13 C 16 O 2 / 12 C 18 O 16 O = 5.87 ± 0.07. The oxygen isotopic ratio is within error bars compatible with terrestrial abundances but not with solar wind measurements. Conclusions. The carbon isotopic ratio and the combined carbon and oxygen isotopic ratio are slightly (14%) enriched in 13 C, within 1σ uncertainty, compared to solar wind abundances and solar abundances. The small fractionation of 12 C/ 13 C in CO 2 is probably compatible with an origin of the material in comets from the native cloud.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017
The European Rosetta mission has been following comet 67P/Churyumov–Gerasimenko for 2 years, stud... more The European Rosetta mission has been following comet 67P/Churyumov–Gerasimenko for 2 years, studying the nucleus and coma in great detail. For most of these 2 years the Rosetta Orbiter Sensor for Ion and Neutral Analysis (ROSINA) has analysed the volatile part of the coma. With its high mass resolution and sensitivity it was able to not only detect deuterated water HDO, but also doubly deuterated water, D2O and deuterated hydrogen sulfide HDS. The ratios for [HDO]/[H2O], [D2O]/[HDO] and [HDS]/[H2S] derived from our measurements are (1.05 ± 0.14) × 10−3, (1.80 ± 0.9) × 10−2and (1.2 ± 0.3) × 10−3, respectively. These results yield a very high ratio of 17 for [D2O]/[HDO] relative to [HDO]/[H2O]. Statistically one would expect just 1/4. Such a high value can be explained by cometary water coming unprocessed from the presolar cloud, where water is formed on grains, leading to high deuterium fractionation. The high [HDS]/[H2S] ratio is compatible with upper limits determined in low-mass ...
Monthly Notices of the Royal Astronomical Society, 2017
We present the ion composition in the coma of comet 67P with newly detected ion species over the ... more We present the ion composition in the coma of comet 67P with newly detected ion species over the 28-37 u mass range, probed by Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA)/Double Focusing Mass Spectrometer (DFMS). In summer 2015, the nucleus reached its highest outgassing rate and ion-neutral reactions started to take place at low cometocentric distances. Minor neutrals can efficiently capture protons from the ion population, making the protonated version of these neutrals a major ion species. So far, only NH + 4 has been reported at comet 67P. However, there are additional neutral species with proton affinities higher than that of water (besides NH 3 ) that have been detected in the coma of comet 67P: CH 3 OH, HCN, H 2 CO and H 2 S. Their protonated versions have all been detected. Statistics showing the number of detections with respect to the number of scans are presented. The effect of the negative spacecraft potential probed by the Rosetta Plasma Consortium/LAngmuir Probe on ion detection is assessed. An ionospheric model has been developed to assess the different ion density profiles and compare them to the ROSINA/DFMS measurements. It is also used to interpret the ROSINA/DFMS observations when different ion species have similar masses, and their respective densities are not high enough to disentangle them using the ROSINA/DFMS high-resolution mode. The different ion species that have been reported in the coma of 67P are summarized and compared with the ions detected at comet 1P/Halley during the Giotto mission.
Monthly Notices of the Royal Astronomical Society, 2016
Monthly Notices of the Royal Astronomical Society, 2016
Several sulphur-bearing species have already been observed in different families of comets. Howev... more Several sulphur-bearing species have already been observed in different families of comets. However, the knowledge on the minor sulphur species is still limited. The comet's sulphur inventory is closely linked to the pre-solar cloud and holds important clues to the degree of reprocessing of the material in the solar nebula and during comet accretion. Sulphur in pre-solar clouds is highly depleted, which is quite puzzling as the S/O ratio in the diffuse interstellar medium is cosmic. This work focuses on the abundance of the previously known species H 2 S, OCS, SO, S 2 , SO 2 and CS 2 in the coma of comet 67P/Churyumov-Gerasimenko measured by Rosetta Orbiter Spectrometer for Ion and Neutral Analysis/Double Focusing Mass Spectrometer between equinox and perihelion 2015. Furthermore, we present the first detection of S 3 , S 4 , CH 3 SH and C 2 H 6 S in a comet, and we determine the elemental abundance of S/O in the bulk ice of (1.47 ± 0.05) × 10 -2 . We show that SO is present in the coma originating from the nucleus, but not CS in the case of 67P, and for the first time establish that S 2 is present in a volatile and a refractory phase. The derived total elemental sulphur abundance of 67P is in agreement with solar photospheric elemental abundances and shows no sulphur depletion as reported for dense interstellar clouds. Also the presence of S 2 at heliocentric distances larger than 3 au indicates that sulphur-bearing species have been processed by radiolysis in the pre-solar cloud and that at least some of the ice from this cloud has survived in comets up the present.
International Journal of Mass Spectrometry, 2015
Nature, Jan 29, 2015
The composition of the neutral gas comas of most comets is dominated by H2O, CO and CO2, typicall... more The composition of the neutral gas comas of most comets is dominated by H2O, CO and CO2, typically comprising as much as 95 per cent of the total gas density. In addition, cometary comas have been found to contain a rich array of other molecules, including sulfuric compounds and complex hydrocarbons. Molecular oxygen (O2), however, despite its detection on other icy bodies such as the moons of Jupiter and Saturn, has remained undetected in cometary comas. Here we report in situ measurement of O2 in the coma of comet 67P/Churyumov-Gerasimenko, with local abundances ranging from one per cent to ten per cent relative to H2O and with a mean value of 3.80 ± 0.85 per cent. Our observations indicate that the O2/H2O ratio is isotropic in the coma and does not change systematically with heliocentric distance. This suggests that primordial O2 was incorporated into the nucleus during the comet's formation, which is unexpected given the low upper limits from remote sensing observations. Cur...
Astronomy & Astrophysics, 2015
Context. The ESA Rosetta spacecraft (S/C) is tracking comet 67P/Churyumov-Gerasimenko in close vi... more Context. The ESA Rosetta spacecraft (S/C) is tracking comet 67P/Churyumov-Gerasimenko in close vicinity. This prolonged encounter enables studying the evolution of the volatile coma composition. Aims. Our work aims at comparing the diversity of the coma of 67P/Churyumov-Gerasimenko at large heliocentric distance to study the evolution of the comet during its passage around the Sun and at trying to classify it relative to other comets. Methods. We used the Double Focussing Mass Spectrometer (DFMS) of the ROSINA experiment on ESA's Rosetta mission to determine relative abundances of major and minor volatile species. This study is restricted to species that have previously been detected elsewhere. Results. We detect almost all species currently known to be present in cometary coma with ROSINA DFMS. As DFMS measured the composition locally, we cannot derive a global abundance, but we compare measurements from the summer and the winter hemisphere with known abundances from other comets. Differences between relative abundances between summer and winter hemispheres are large, which points to a possible evolution of the cometary surface. This comet appears to be very rich in CO 2 and ethane. Heavy oxygenated compounds such as ethylene glycol are underabundant at 3 AU, probably due to their high sublimation temperatures, but nevertheless, their presence proves that Kuiper belt comets also contain complex organic molecules.
Astronomy & Astrophysics, 2015
Science (New York, N.Y.), Jan 23, 2015
The provenance of water and organic compounds on Earth and other terrestrial planets has been dis... more The provenance of water and organic compounds on Earth and other terrestrial planets has been discussed for a long time without reaching a consensus. One of the best means to distinguish between different scenarios is by determining the deuterium-to-hydrogen (D/H) ratios in the reservoirs for comets and Earth's oceans. Here, we report the direct in situ measurement of the D/H ratio in the Jupiter family comet 67P/Churyumov-Gerasimenko by the ROSINA mass spectrometer aboard the European Space Agency's Rosetta spacecraft, which is found to be (5.3 ± 0.7) × 10(-4)—that is, approximately three times the terrestrial value. Previous cometary measurements and our new finding suggest a wide range of D/H ratios in the water within Jupiter family objects and preclude the idea that this reservoir is solely composed of Earth ocean-like water.
Science, 2015
Making comets in the cold The speciation of nitrogen compounds in comets can tell us about their ... more Making comets in the cold The speciation of nitrogen compounds in comets can tell us about their history. Comets are some of the most ancient bodies in the solar system and should contain the nitrogen compounds that were abundant when they formed. Using the ROSINA mass spectrometer aboard the Rosetta spacecraft orbiting comet 67P/Churyumov-Gerasimenko, Rubin et al. found molecular nitrogen at levels that are depleted compared to those in the primordial solar system. Depletion of such a magnitude suggests that the comet formed either from the low-temperature agglomeration of pristine amorphous water ice grains or from clathrates. Science , this issue p. 232
Science, 2015
Comets contain the best-preserved material from the beginning of our planetary system. Their nucl... more Comets contain the best-preserved material from the beginning of our planetary system. Their nuclei and comae composition reveal clues about physical and chemical conditions during the early solar system when comets formed. ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) onboard the Rosetta spacecraft has measured the coma composition of comet 67P/Churyumov-Gerasimenko with well-sampled time resolution per rotation. Measurements were made over many comet rotation periods and a wide range of latitudes. These measurements show large fluctuations in composition in a heterogeneous coma that has diurnal and possibly seasonal variations in the major outgassing species: water, carbon monoxide, and carbon dioxide. These results indicate a complex coma-nucleus relationship where seasonal variations may be driven by temperature differences just below the comet surface.
Uploads
Papers by Jean-jacques Berthelier