Russian knapweed is a perennial weed found in many parts of the world, including southern Califor... more Russian knapweed is a perennial weed found in many parts of the world, including southern California. Chronic ingestion of this plant by horses has been reported to cause equine nigropallidal encephalomalacia (ENE), which is associated with a movement disorder simulating Parkinson's disease (PD). Repin, a principal ingredient purified from Russian knapweed, is a sesquiterpene lactone containing an ␣-methylenebutyrolactone moiety and epoxides and is a highly reactive electrophile that can readily undergo conjugation with various biological nucleophiles, such as proteins, DNA, and glutathione (GSH). We show in this study that repin is highly toxic to C57BL/6J mice and Sprague-Dawley rats and acutely induces uncoordinated locomotion associated with postural tremors, hypothermia, and inability to respond to sonic and tactile stimuli. We also show that repin intoxication reduces striatal and hippocampal GSH and increases total striatal dopamine (DA) levels in mice. Striatal microdialysis in rats, however, has demonstrated a significant reduction of extracellular DA levels. These findings, coupled with the absence of any demonstrable change in striatal DOPAC levels, suggest that repin acts by inhibiting DA release, a hypothesis that is further supported by our demonstration that, in cultured PC12 cells, repin inhibits the release of DA without affecting its uptake. We believe, therefore, that inhibition of DA release represents one of the earliest pathogenetic events in ENE, leading eventually to striatal extracellular DA denervation, oxidative stress, and degeneration of nigrostriatal pathways. Since the neurotoxic effects of repin appear to be mediated via oxidative stress, and since repin is a natural product isolated from a plant in our environment that can cause a movement disorder associated with degeneration of nigrostriatal pathways, clarification of the mechanism of repin neurotoxicity may provide new insights into our understanding of the pathogenesis of PD. 1998
Glutathione (GSH) 4 is an essential tripeptide that provides The Effects of Glutathione Glycoside... more Glutathione (GSH) 4 is an essential tripeptide that provides The Effects of Glutathione Glycoside in Methyl Mercury Poisona reducing milieu for the maintenance of protein thiols and ing. CHOI, B. H., YEE, S., AND ROBLES, M. (1996). Toxicol. Appl. antioxidants, reduction of ribonucleotides, and protection Pharmacol. 141, 357-364.
Repin is the principal sesquiterpene lactone isolated from Russian knapweed (Centaurea repens), a... more Repin is the principal sesquiterpene lactone isolated from Russian knapweed (Centaurea repens), a perennial weed found in many parts of the United States. Ingestion of Centaurea repens by horses has been reported to cause a movement disorder simulating Parkinson's disease (PD) and nigrostriatal degeneration, called equine nigrostriatal encephalomalacia (ENE). To understand the mechanisms whereby ingestion of Centaurea repens induces ENE and a PD-like disorder, repin cytotoxicity was examined to explore its pathogenetic relationship to ENE and to PD. Repin was highly cytotoxic to both PC12 cells and mouse astrocytes in a dose- and time-dependent manner. The cytotoxic effects were accompanied by depletion of glutathione (GSH), a rise in the level of reactive oxygen species (ROS) and damage to cellular membranes. Although repin is a highly reactive electrophile that can readily conjugate GSH, GSH depletion may not be the sole mechanism underlying repin cytotoxicity as shown by our study using buthionine sulfoximine, in which severe GSH depletion did not result in a parallel increase in cell death. However, pre-treatment with GSH-glycoside or with lipoic acid provided significant protection from repin-induced cell death. These data suggest that oxidative stress plays a major role in repin cytotoxicity. Since oxidative stress is considered to play a major role in neuronal degeneration accompanied by depletion of mitochondrial GSH and an increase in lipid peroxides in the substantia nigra of PD, further elucidation of mechanisms of repin neurotoxicity may generate clues regarding not only the mechanisms of neuronal degeneration but also the possible role of environmental factors in the pathogenesis of PD.
Russian knapweed is a perennial weed found in many parts of the world, including southern Califor... more Russian knapweed is a perennial weed found in many parts of the world, including southern California. Chronic ingestion of this plant by horses has been reported to cause equine nigropallidal encephalomalacia (ENE), which is associated with a movement disorder simulating Parkinson's disease (PD). Repin, a principal ingredient purified from Russian knapweed, is a sesquiterpene lactone containing an ␣-methylenebutyrolactone moiety and epoxides and is a highly reactive electrophile that can readily undergo conjugation with various biological nucleophiles, such as proteins, DNA, and glutathione (GSH). We show in this study that repin is highly toxic to C57BL/6J mice and Sprague-Dawley rats and acutely induces uncoordinated locomotion associated with postural tremors, hypothermia, and inability to respond to sonic and tactile stimuli. We also show that repin intoxication reduces striatal and hippocampal GSH and increases total striatal dopamine (DA) levels in mice. Striatal microdialysis in rats, however, has demonstrated a significant reduction of extracellular DA levels. These findings, coupled with the absence of any demonstrable change in striatal DOPAC levels, suggest that repin acts by inhibiting DA release, a hypothesis that is further supported by our demonstration that, in cultured PC12 cells, repin inhibits the release of DA without affecting its uptake. We believe, therefore, that inhibition of DA release represents one of the earliest pathogenetic events in ENE, leading eventually to striatal extracellular DA denervation, oxidative stress, and degeneration of nigrostriatal pathways. Since the neurotoxic effects of repin appear to be mediated via oxidative stress, and since repin is a natural product isolated from a plant in our environment that can cause a movement disorder associated with degeneration of nigrostriatal pathways, clarification of the mechanism of repin neurotoxicity may provide new insights into our understanding of the pathogenesis of PD. 1998
Glutathione (GSH) 4 is an essential tripeptide that provides The Effects of Glutathione Glycoside... more Glutathione (GSH) 4 is an essential tripeptide that provides The Effects of Glutathione Glycoside in Methyl Mercury Poisona reducing milieu for the maintenance of protein thiols and ing. CHOI, B. H., YEE, S., AND ROBLES, M. (1996). Toxicol. Appl. antioxidants, reduction of ribonucleotides, and protection Pharmacol. 141, 357-364.
Repin is the principal sesquiterpene lactone isolated from Russian knapweed (Centaurea repens), a... more Repin is the principal sesquiterpene lactone isolated from Russian knapweed (Centaurea repens), a perennial weed found in many parts of the United States. Ingestion of Centaurea repens by horses has been reported to cause a movement disorder simulating Parkinson's disease (PD) and nigrostriatal degeneration, called equine nigrostriatal encephalomalacia (ENE). To understand the mechanisms whereby ingestion of Centaurea repens induces ENE and a PD-like disorder, repin cytotoxicity was examined to explore its pathogenetic relationship to ENE and to PD. Repin was highly cytotoxic to both PC12 cells and mouse astrocytes in a dose- and time-dependent manner. The cytotoxic effects were accompanied by depletion of glutathione (GSH), a rise in the level of reactive oxygen species (ROS) and damage to cellular membranes. Although repin is a highly reactive electrophile that can readily conjugate GSH, GSH depletion may not be the sole mechanism underlying repin cytotoxicity as shown by our study using buthionine sulfoximine, in which severe GSH depletion did not result in a parallel increase in cell death. However, pre-treatment with GSH-glycoside or with lipoic acid provided significant protection from repin-induced cell death. These data suggest that oxidative stress plays a major role in repin cytotoxicity. Since oxidative stress is considered to play a major role in neuronal degeneration accompanied by depletion of mitochondrial GSH and an increase in lipid peroxides in the substantia nigra of PD, further elucidation of mechanisms of repin neurotoxicity may generate clues regarding not only the mechanisms of neuronal degeneration but also the possible role of environmental factors in the pathogenesis of PD.
Uploads
Papers by Mario Robles