2-Mercaptoethanol

From Infogalactic: the planetary knowledge core
(Redirected from 2-mercaptoethanol)
Jump to: navigation, search
2-Mercaptoethanol
Names
IUPAC name
2-Sulfanylethan-1-ol
Other names
2-Hydroxy-1-ethanethiol

β-Mercaptoethanol

Thioglycol
Identifiers
60-24-2 YesY
3DMet B00201
773648
ChEBI CHEBI:41218 YesY
ChEMBL ChEMBL254951 YesY
ChemSpider 1512 YesY
DrugBank DB03345 YesY
EC Number 200-464-6
1368
Jmol 3D model Interactive image
KEGG C00928 N
MeSH Mercaptoethanol
PubChem 1567
RTECS number KL5600000
UN number 2966
  • InChI=1S/C2H6OS/c3-1-2-4/h3-4H,1-2H2 YesY
    Key: DGVVWUTYPXICAM-UHFFFAOYSA-N YesY
  • OCCS
Properties
C2H6OS
Molar mass 78.13 g·mol−1
Density 1.114 g/cm3
Melting point −100 °C (−148 °F; 173 K)
Boiling point 157 °C; 314 °F; 430 K
log P -0.23
Vapor pressure 100 Pa (at 20 °C)
Acidity (pKa) 9.643
Basicity (pKb) 4.354
1.4996
Vapor pressure {{{value}}}
Related compounds
Related compounds
Ethylene glycol

1,2-Ethanedithiol

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

2-Mercaptoethanol (also β-mercaptoethanol, BME, 2BME, 2-ME or β-met) is the chemical compound with the formula HOCH2CH2SH. ME or βME, as it is commonly abbreviated, is used to reduce disulfide bonds and can act as a biological antioxidant by scavenging hydroxyl radicals (amongst others). It is widely used because the hydroxyl group confers solubility in water and lowers the volatility. Due to its diminished vapor pressure, its odor, while unpleasant, is less objectionable than related thiols.

Preparation

2-Mercaptoethanol may be prepared by the action of hydrogen sulfide on ethylene oxide:[1]

Reaction scheme for the preparation of 2-mercaptoethanol from ethylene oxide and hydrogen sulfide

Reactions

2-Mercaptoethanol reacts with aldehydes and ketones to give the corresponding oxathiolanes. This makes 2-mercaptoethanol useful as a protecting group.[2]

Reaction scheme for the formation of oxathiolanes by reaction of 2-mercaptoethanol with aldehydes or ketones

Applications

Reducing proteins

Some proteins can be denatured by 2-mercaptoethanol, which cleaves the disulfide bonds that may form between thiol groups of cysteine residues. In the case of excess 2-mercaptoethanol, the following equilibrium is shifted to the right:

RS–SR + 2 HOCH2CH2SH ⇌ HOCH2CH2S–SCH2CH2OH + 2 RSH
Reaction scheme for the cleavage of disulfide bonds by 2-mercaptoethanol

By breaking the S-S bonds, both the tertiary structure and the quaternary structure of some proteins can be disrupted.[3] Because of its ability to disrupt the structure of proteins, it was used in the analysis of proteins, for instance, to ensure that a protein solution contains monomeric protein molecules, instead of disulfide linked dimers or higher order oligomers. However, since 2-mercaptoethanol forms adducts with free cysteines and is somewhat more toxic, dithiothreitol (DTT) is generally more used especially in SDS-PAGE. DTT is also a more powerful reducing agent with a redox potential (at pH 7) of −0.33 V, compared to −0.26 V for 2-mercaptoethanol.[4]

2-Mercaptoethanol is often used interchangeably with dithiothreitol (DTT) or the odorless tris(2-carboxyethyl)phosphine (TCEP) in biological applications.

Although 2-mercaptoethanol has a higher volatility than DTT, it is more stable: 2-mercaptoethanol's half-life is more than 100 hours at pH 6.5 and 4 hours at pH 8.5; DTT's half-life is 40 hours at pH 6.5 and 1.5 hours at pH 8.5.[5][6]

Preventing protein oxidation

2-Mercaptoethanol and related reducing agents (e.g., DTT) are often included in enzymatic reactions to inhibit the oxidation of free sulfhydryl residues, and hence maintain protein activity. It is used in several enzyme assays as a standard buffer.[7]

Denaturing ribonucleases

2-Mercaptoethanol is used in some RNA isolation procedures to eliminate ribonuclease released during cell lysis. Numerous disulfide bonds make ribonucleases very stable enzymes, so 2-mercaptoethanol is used to reduce these disulfide bonds and irreversibly denature the proteins. This prevents them from digesting the RNA during its extraction procedure.[8]

Safety

2-Mercaptoethanol is considered toxic, causing irritation to the nasal passageways and respiratory tract upon inhalation, irritation to the skin, vomiting and stomach pain through ingestion, and potentially death if severe exposure occurs. [9]

References

  1. Knight, J. J. (2004) "2-Mercaptoethanol" in Encyclopedia of Reagents for Organic Synthesis (Ed: L. Paquette), J. Wiley & Sons, New York. doi:10.1002/047084289.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Yeh, J. I. (2009) "Additives and microcalorimetric approaches for optimization of crystallization" in Protein Crystallization, 2nd Edition (Ed: T. Bergfors), International University Line, La Jolla, CA. ISBN 978-0-9720774-4-6.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.

Lua error in package.lua at line 80: module 'strict' not found.