Synovial membrane
Synovial membrane | |
---|---|
Typical Joint
|
|
Synovial joint
|
|
Details | |
Latin | membrana synovialis capsulae articularis |
Identifiers | |
Dorlands /Elsevier |
m_08/12522248 |
TA | Lua error in Module:Wikidata at line 744: attempt to index field 'wikibase' (a nil value). |
TH | {{#property:P1694}} |
TE | {{#property:P1693}} |
FMA | {{#property:P1402}} |
Anatomical terminology
[[[d:Lua error in Module:Wikidata at line 863: attempt to index field 'wikibase' (a nil value).|edit on Wikidata]]]
|
The synovial membrane (also known as synovium or stratum synoviale)[help 1] is the soft tissue found between the joint capsule and the joint cavity of synovial joints.[1][2] It secretes the synovial fluid, which fills the joint cavity and lubricates the joint.
Contents
Structure
Lua error in package.lua at line 80: module 'strict' not found. The synovial membrane is variable but often has two layers
- The outer layer, or subintima, can be of almost any type of connective tissue – fibrous, fatty or areolar.
Where the underlying subintima is loose, the intima sits on a pliable membrane, giving rise to the term synovial membrane.
This membrane, together with the cells of the intima, provides something like an inner tube, sealing the synovial fluid from the surrounding tissue (effectively stopping the joints from being squeezed dry when subject to impact, such as running).
The surface of synovium may be flat or may be covered with finger-like projections or villi, which, it is presumed, help to allow the soft tissue to change shape as the joint surfaces move one on another.
Just beneath the intima, most synovium has a dense net of small blood vessels that provide nutrients not only for synovium but also for the avascular cartilage.
In any one position, much of the cartilage is close enough to get nutrition direct from synovium.
Some areas of cartilage have to obtain nutrients indirectly and may do so either from diffusion through cartilage or possibly by 'stirring' of synovial fluid.
The intimal cells are of two types, fibroblasts and macrophages, both of which are different in certain respects from similar cells in other tissues.
- The fibroblasts manufacture a long-chain sugar polymer called hyaluronan; which makes the synovial fluid "ropy"-like egg-white, together with a molecule called lubricin, which lubricates the joint surfaces. The water of synovial fluid is not secreted as such but is effectively trapped in the joint space by the hyaluronan.
- The macrophages are responsible for the removal of undesirable substances from the synovial fluid.
Synovial cell
Synovial cell | Resemble | Prominent organelle | Function |
---|---|---|---|
Type A | Macrophage | Mitochondria | Phagocytosis |
Type B | Fibroblast | Endoplasmic reticulum | Secrete hyaluronic acid, & proteins complex (mucin) of synovial fluid |
Mechanics
Lua error in package.lua at line 80: module 'strict' not found. Although a biological joint can resemble a man-made joint in being a hinge or a ball and socket, the engineering problems that nature must solve are very different because the joint works within an almost completely solid structure, with no wheels or nuts and bolts.
In general, the bearing surfaces of manmade joints interlock, as in a hinge. This is rare for biological joints (although the badger's jaw interlocks).
More often the surfaces are held together by cord-like ligaments. Virtually all the space between muscles, ligaments, bones, and cartilage is filled with pliable solid tissue. The fluid-filled gap is at most only a twentieth of a millimetre thick. This means that synovium has certain rather unexpected jobs to do. These may include:
- Providing a plane of separation, or disconnection, between solid tissues so that movement can occur with minimum bending of solid components. If this separation is lost, as in a 'frozen shoulder', the joint cannot move.
- Providing a packing that can change shape in whatever way is needed to allow the bearing surfaces to move on each other.
- Controlling the volume of fluid in the cavity so that it is just enough to allow the solid components to move over each other freely. This volume is normally so small that the joint is under slight suction.
Pathology
Lua error in package.lua at line 80: module 'strict' not found. Synovium can become irritated and thickened (synovitis) in conditions such as osteoarthritis,[3] Ross River virus[4] or rheumatoid arthritis.[5]
In general, inflamed synovium is accompanied by extra macrophage recruitment (as well as the existing type A cells), fibroblast proliferation and an influx of inflammatory cells including lymphocytes, monocytes and plasma cells.[6] When this happens, the synovium can interfere with the normal functioning of the joint. Excessive thickened synovium, filled with cells and fibrotic collagenous tissue, can physically restrict joint movement. The synovial fibroblasts may make smaller hyaluronan so it is a less effective lubricant of the cartilge surfaces. Under stimulation from invading inflammatory cells, the synovial cells may also produce enzymes (proteinases) that can digest the cartilage extracellular matrix. Fragments of extracellular matrix can then further irritate the synovium.
Etymology and pronunciation
The word synovium is related to the word synovia in its sense meaning "synovial fluid". The latter was coined by Paracelsus.[7] More information is given at Synovial fluid § Etymology and pronunciation.
See also
References
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.