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Abstract

The central aim of most fields of data analysis and exper-
imental scientific investigation is to draw valid conclusions
from a given data set. But when past inferences guide future
inquiries into the same dataset, reaching valid inferences be-
comes significantly more difficult. In addition to avoiding the
overfitting that can result from adaptive analysis, a data ana-
lyst often wants to use as little time and data as possible. A
recent line of work in the theory community has established
mechanisms that provide low generalization error on adaptive
queries, yet there remain large gaps between established theo-
retical results and how data analysis is done in practice. Many
practitioners, for instance, successfully employ bootstrapping
and related sampling approaches in order to maintain validity
and speed up analysis, but prior to this work, no theoretical
analysis existed to justify employing such techniques in this
adaptive setting.
In this paper, we show how these techniques can be used
to provably guarantee validity while speeding up analysis.
Through this investigation, we initiate the study of sub-linear
time mechanisms to answer adaptive queries into datasets.
Perhaps surprisingly, we describe mechanisms that provide
an exponential speed-up per query over previous mecha-
nisms, without needing to increase the total amount of data
needed for low generalization error. We also provide a
method for achieving statistically-meaningful responses even
when the mechanism is only allowed to see a constant number
of samples from the data per query.

1 Introduction
The field of data analysis seeks out statistically valid con-
clusions from data: inferences that generalize to an under-
lying distribution rather than specialize to the data sample
at hand. As a result, classical proofs of statistical efficiency
have focused on independence assumptions on data with a
pre-determined sequence of analyses [19]. In practice, most
data analysis is adaptive: previous inferences inform future
analysis. This adaptivity is nigh impossible to avoid when
multiple scientists contribute work to an area of study using
the same or similar data sets. Unfortunately, adaptivity may
lead to ‘false discovery,’ where the dependence on past anal-
ysis may create pervasive overfitting—also known as ‘the
garden of forking paths’ or ‘p hacking’ [12]. While basing
each analysis on new data drawn from the same distribution
might appear an appealing solution, repeated data collection

and analysis time can be prohibitively costly.
There has been much recent progress in minimizing the

amount of data needed to draw generalizable conclusions,
without having to make any assumptions about the type of
adaptations used by the data analysis. However, the results
in this burgeoning field of adaptive data analysis have ig-
nored bootstrapping and related sampling techniques, even
though it has enjoyed widespread and successful use in prac-
tice in a variety of settings [18, 26], including in adaptive set-
tings [13]. This is a gap that not only points to an unexplored
area of theoretical study, but also opens up the possibility of
creating substantially faster algorithms for answering adap-
tively generated queries.

In this paper, we aim to do just this: we develop strong
theoretical results that are exponentially faster than previ-
ous approaches, and we open up a host of interesting open
problems at the intersection of sublinear-time algorithm de-
sign and this important new field. For example, sub-linear
time algorithms are a necessary component to establish non-
trivial results in property testing. We also enable the intro-
duction of anytime algorithms in adaptive data analysis, by
defining mechanisms that provide guarantees on accuracy
when the time allotted is restricted.

As in previous literature, a mechanismM is given an i.i.d.
sample S of size n from an unknown distribution D over a
finite space X , and is given queries of the form q : D →
R. After each query, the mechanism must respond with an
answer a that is close to q(D) up to a parameter α with high
probability. Furthermore, each query may be adaptive: The
query may depend on the previous queries and answers to
those queries.

In previous work, the mechanisms execute in Ω (n) time
per query. In this work, we introduce mechanisms that make
an exponential improvement on this bound. Remarkably, we
show that these results come at almost no tradeoff—we can
obtain these exponential improvements in running time and
yet use essentially the same sample sizes.

1.1 Motivation and results
Our results are summarized in Table 1. Our first result, in
Section 3, is a method to answer low-sensitivity queries (de-
fined in Section 2) that still has Õ(

√
k/α2) sample complex-

ity (as in previous work) but takes exponentially less time
per query than previous approaches (Theorem 10). More-



Table 1: Time per query

Query Type Previous Work This Work

Low-sensitivity queries
with Õ

(√
k

α2

)
sample complexity Õ

(√
k

α2

)
[1] Õ

(
log2(k)
α2

)
Sampling counting queries
with Õ

(√
k

α2

)
sample complexity Õ

(√
k

α2

)
Õ
(
log
(
k
α

))
Summary of our results. k is the number of queries and α is the accuracy rate. Dependence on the probability of failure has been suppressed
for ease of reading. For more precise definitions, see Section 2.

over, our mechanism to answer a query is simple: given a
database S, we first sample ` points i.i.d. from S, compute
the empirical mean of q on that subsample, and then add
Laplacian noise, which guarantees a differentially-private
mechanism. The intuition behind this approach is that sam-
pling offers two benefits: it can decrease computation time
while simultaneously boosting privacy. Privacy yields a
strong notion of stability, which in turn allows us to re-
duce the computation time without sacrificing accuracy. In
particular, this mechanism takes only Õ(log2(k)/α2) time
per query and a sample size of ` = Õ(log(k)/α2), all
while matching the established sample complexity bound
Õ(
√
k/α2). Even in the non-adaptive case, it must take

Ω(log(k)/α2) samples to answer k such queries [1]. This
means our results are tight in ` and come close to match-
ing the best known lower-bound for the time complex-
ity of answering such queries adaptively, which is simply
Ω(log(k)/α2). We show that this holds both when using
uniform sampling with replacement and sampling without
replacement.

While both sampling methods require examining ` =
Õ(log(k)/α2) samples per query, an analyst may wish to
control the number of samples used. For example, the ana-
lyst might want the answer to a counting query using a very
small number of sample points from the database, even just
a single sample point. The above methods cannot handle
this case gracefully because when ` is sufficiently small, the
guarantees on accuracy (using Definition 2 below) become
trivial—we get only that α = O(1), which any mechanism
will satisfy. Instead, we want the mechanism to have to re-
turn a statistically-meaningful reply even if ` = 1. Indeed,
the empirical answer to such a query is {0, 1}-valued, while
a response using Laplacian noise will not be.

To address these issues, we consider an ‘honest’ setting
where the mechanism must always yield a plausible reply
to each query (Section 4). This is analogous to the honest
version [27] of the statistical query (SQ) setting for learn-
ing [2, 16], or the 1-STAT oracle for optimization [11]. Thus
we introduce sampling counting queries, which imitate the
process of an analyst requesting the value of a query on a
single random sample. This allows for greater control over
how long each query takes, in addition to greater control
over the outputs. Namely, we require that for a query of the

form q : X → {0, 1}, the mechanism must output a {0, 1}-
valued answer that is accurate in expectation. We show how
to answer queries of this form by sampling a single point
x from S and then applying a simple differentially-private
algorithm to q(x) that has not been used in adaptive data
analysis prior to this work (Theorem 14). Finally, in Sec-
tion 5, we compare sampling counting queries to counting
queries.

1.2 Previous work
Previous work in this area has focused on finding accurate
mechanisms with low sample complexity (the size of S) for
a variety of queries and settings [1, 6, 7, 21, 22]. Most appli-
cable to our work is that of Bassily et al. [1] who consider,
among others, low-sensitivity queries, which are merely any
function of Xn whose output does not change much when
the input is perturbed (for a more precise definition, see
below). If the queries are nonadaptive, then only roughly
log(k)/α2 samples are needed to answer k such queries.
And if the queries are adaptive but the mechanism simply
outputs the empirical estimate of q on S, then the sample
complexity is order k/α2 instead—exponentially worse.

In this paper, we will focus only on computationally ef-
ficient mechanisms. It is not necessarily obvious that it is
possible to achieve a smaller sample complexity for an effi-
cient mechanism in the adaptive case, but Bassily et al. [1],
building on the work of Dwork et al. [7], provide a mech-
anism with sample complexity n = Õ(

√
k/α2) to answer

k low-sensitivity queries. Furthermore, for efficient mech-
anisms, this bound is tight in k [23]. This literature shows
that the key to finding such mechanisms with this quadratic
improvement over the naive method is finding stable mecha-
nisms: those whose output does not change too much when
the sample is changed by a single element. Much of this
literature leverages differential privacy [1, 6, 7, 22], which
offers a strong notion of stability.

Since this work uses differentially-private mechanisms af-
ter sampling, we are acutely interested in the impact on pri-
vacy when sampling. In both theory and practice, sampling
in settings where privacy matters has long been deemed use-
ful, in a variety of areas [14, 15, 17].

In our setting, we need an efficient uniform sampling
method that not only maintains privacy, but actually boosts



it. In particular, for an ε-private mechanism on a database
of size n, we want to show that if you sample ` points uni-
formly and efficiently from those n points, and then apply
the same mechanism, the result is O

(
`
nε
)
-private.

Fortunately, folklore has it that sampling boosts privacy–
implicitly in Kasiviswanathan et al. [15], and certainly ex-
plicitly in the work of Lin et al. [20], who show that sam-
pling without replacement boosts privacy to the degree we
require for a particular setting. We note that their proof
method easily generalizes to arbitrary domains and ε-private
mechanisms. In addition, Bun et al. [4] show that sampling
with replacement also boosts privacy.

2 Model and preliminaries
In the adaptive data analysis setting we consider, a (possibly
stateful) mechanism M that is given an i.i.d. sample S of
size n from an unknown distribution D over a finite space
X . The mechanismM must answer queries from a stateful
adversary A. These queries are adaptive: A outputs a query
qi, to which the mechanism returns a response ai, and the
outputs ofA andMmay depend on all queries q1, . . . , qi−1
and responses a1, . . . , ai−1.

2.1 Low-sensitivity queries
In this work, the first type of query we consider is a low-
sensitivity query, which is specified by a function q :
Xn → [0, 1] with the property that for all samples S, S′ ∈
Xn where S and S′ differ by at most one element, we
have |q(S) − q(S)′| ≤ 1/n, where we define q(D) =
ES∼Dn [q(S)]. We can now define the accuracy ofM.

Definition 1. A mechanismM is said to be (α, β)-accurate
over a sample S on queries q1, . . . , qk if for its responses
a1, . . . , ak we have

PM,A[max
i
|qi(S)− ai| ≤ α] ≥ 1− β.

The key requirement is stronger. Namely, we seek accu-
racy over the unknown distribution.

Definition 2. A mechanism M is (α, β)-accurate on dis-
tribution D, and on queries q1, . . . , qk, if for its responses
a1, . . . , ak we have

PM,A[max
i
|qi(D)− ai| ≤ α] ≥ 1− β.

In this work, we not only want (α, β)-accuracy but we
also want to consider the time per query M takes. In this
work, we assume we will have oracle access to q, which will
compute q(x) for a sample point x in unit time (and also
q(S) in at most |S| time). This is not a strong assumption:
If the queries can be computed efficiently, then this can add
only at most a poly-log factor overhead in n and |X| (as
long as we only compute q on a roughly log(n) size sample,
which will turn out to be exactly the case).

2.2 Counting queries and sampling counting
queries

In this work we also consider counting queries, which ask
the question “What proportion of the data satisfies property

q?” Counting queries are a simple and important restriction
of low-sensitivity queries [3, 5, 22]. More formally, a count-
ing query is specified by a function q : X → {0, 1}, where
q(S) = 1

|S|
∑
x∈S q(x) and q(D) = Ex∼D[q(x)]. As in the

low-sensitivity setting, an answer to a counting query must
be close to q(D) (Definition 2).

This means, however, that answers will not necessarily be
counts themselves, nor meaningful in settings where we re-
quire ` to be small, i.e. very few samples from the database.
To this end, we introduce sampling counting queries. A
sampling counting query (SCQ) is again specified by a func-
tion q : X → {0, 1}, but this time the mechanismM must
return an answer a ∈ {0, 1}. Given these restricted re-
sponses, we want such a mechanism to act like what would
happen if A were to take a single random sample point x
from D and evaluate q(x). The average value the mecha-
nism returns (over the coins of the mechanism) should be
close to the expected value of q. More precisely, we want
the following:
Definition 3. A mechanismM is (α, β)-accurate on distri-
bution D for k sampling counting queries qi if for all states
ofM and A, whenM is given an i.i.d. sample S from D,

PS,M,A

[
max
i
|EM[M(qi)]− qi(D)| ≤ α

]
≥ 1− β.

We also define (α, β)-accuracy on a sample S from D
analagously. Again, our requirement is that M be (α, β)-
accurate with respect to the unknown distribution D, this
time using only around log(n) time per query.

2.3 Differential privacy
Differential privacy, first introduced by Dwork et al. [8], pro-
vides a strong notion of stability.
Definition 4 (Differential privacy). Let M : Xn → Z a
randomized algorithm. We call M (ε, δ)-differentially pri-
vate if for every two samples S, S′ ∈ Xn, and every z ⊂ Z,

P[M(S) ∈ z] ≤ eε · P[M(S′) ∈ z] + δ.

IfM is (ε, 0)-private, we may simply call it ε-private.

Differential privacy comes with several guarantees useful
for developing new mechanisms.
Proposition 5 (Adaptive composition [9, 10]). Given pa-
rameters 0 < ε < 1 and δ > 0, to ensure (ε, kδ′+δ)-privacy
over k adaptive mechanisms, it suffices that each mechanism
is (ε′, δ′)-private, where

ε′ =
ε

2
√

2k log(1/δ)
.

We also have a post-processing guarantee:
Lemma 6 (Post-processing [9]). LetM : Xn → Z be an
(ε, δ)-private mechanism and f : Z → Z ′ a (possibly ran-
domized) algorithm. Then f ◦M is (ε, δ)-private.

In this paper, we use two well-established differentially-
private mechanisms: the Laplace and exponential mecha-
nisms. See Dwork & Roth [9] for more on differential pri-
vacy and these mechanisms.



2.4 The transfer theorem
A key method of Bassily et al. [1] for answering queries
adaptively is a ‘transfer theorem,’ which states that if a
mechanism is both accurate on a sample and differentially
private, then it will be accurate on the sample’s generating
distribution.
Theorem 7 (Bassily et al. [1]). LetM be a mechanism that
on input sample S ∼ Dn answers k adaptively chosen low-
sensitivity queries, is ( α64 ,

αβ
32 )-private for some α, β > 0

and (α8 ,
αβ
16 )-accurate on S. ThenM is (α, β)-accurate on

D.
Their ‘monitoring algorithm’ proof technique involves a

thought experiment in which an algorithm, called the mon-
itor, assesses how accurately an input mechanism replies to
an adversary, and remembers the query it does the worst on.
It repeats this process some T times, and outputs the query
that the mechanism does the worst on over all T rounds.
Since the mechanism is private, so too is the monitor; and
since privacy implies stability, this will ensure that the accu-
racy of the worst query is not too bad. For more details see
Bassily et al. [1].

In order to prove our own transfer theorem for SCQ’s,
we will use some of the tools they developed. First, for a
monitoring algorithmW , the expected value of the outputted
query on the sample will be close to its expected value over
the distribution—formalizing a connection between privacy
and stability.
Lemma 8 (Bassily et al. [1]). LetW : (Xn)T → Q×[T ] be
(ε, δ)-private where Q is the class of counting queries. Let
Si ∼ Dn for each of i ∈ [T ] and S = {S1, . . . , ST }. Then

|ES,W [q(D)|(q, t) =W(S)]− ES,W [q(St)|(q, t) =W(S)]|
≤ eε − 1 + Tδ.

We will also use a convenient form of accuracy bound for
the exponential mechanism.
Lemma 9 (Bassily et al. [1]). LetR be a finite set, f : R →
R a function, and η > 0. Define a random variable X onR
by P[X = r] = eηf(r)/C, where C =

∑
r∈R e

ηf(r). Then

E[f(X)] ≥ max
r∈R

f(r)− 1

η
log |R|.

3 Fast mechanisms using sampling
In this section, we provide simple and fast mechanisms for
answering low-sensitivity queries. Our mechanism M for
answering low-sensitivity queries is very simple: Given a
data set S of size n and query q, sample some ` points uni-
formly at random from S (with or without replacement),
and call this new set S`. Then the mechanism returns
q(S`) + Lap

(
1
`ε

)
, where Lap(b) refers to the zero-mean

Laplacian distribution with scale parameter b.
We may now state our main theorem for mechanismM,

using suitable values for ε and `.

Theorem 10. When ε = O(1/α) and ` ≥ 2 log(4k/β)
α2 for k

low-sensitivity queries,

1. M takes Õ
(

log(k) log(k/β)
α2

)
time per query.

2. M is (α, β)-accurate (on the distribution) so long as

n = Ω

(√
k log k · log3/2( 1

αβ )

α2

)
.

Sampling with replacement takes O(log n) time per sam-
ple, for a total of O(` log n) time over ` samples. This suf-
fices to prove part 1) for the values of ` and n given. It is
also the case that sampling without replacement may take
O(log n) time per sample, for a total ofO(` log n) time over
` samples, in several settings. Again, this is sufficient, but
may come at the cost of space complexity, e.g. by keeping
track of which elements have not been chosen so far [25].
Alternatively, there are methods that enjoy optimal space
complexity at the cost of worst-case running times, as in re-
jection sampling [24].

To prove part 2), we must establish that sampling boosts
privacy. If sampling before a a ε-private mechanism were to
only deliver O(ε) instead of O( `nε) privacy then we would

need ` > 2
√

2k log(1/δ) log(2k/β)

αε , which would be undesir-
able: ` then becomes the size of the entire database and
sampling yields no time savings over computing q(S) ex-
actly. Fortunately, sampling can boost privacy:
Proposition 11 (Adapted from Lin et al. [20]). Given a
mechanism P : X` → Y , M will be the mechanism that
does the following: Sample uniformly at random without re-
placement ` points from an input sample S ∈ Xn of size n,
and call this set S`. Output P(S`). Then if P is ε-private,
thenM is log(1+ `

n (eε − 1)) = O
(
`
n · ε

)
private for ` ≥ 1.

Sampling with replacement also boosts privacy:
Proposition 12 (Bun et al. [4]). Given a mechanism P :
X` → Y ,M will be the mechanism that does the following:
Sample uniformly at random with replacement ` points from
an input sample S ∈ Xn of size n, and call this set S`.
Output P(S`). Then if P is ε-private, thenM is 6ε`

n -private
for ` ≥ 1.

We may now return to the main theorem:

Proof of Theorem 10. Since the Laplace mechanism re-
ceives a sample S` of size `, output aq can be bounded with
the standard accuracy result for the Laplace mechanism en-
suring ε′′-privacy for any ε′′ > 0:

P[|aq − q(S`)| ≥ α/2] ≤ e−αε
′′`
2 .

We can bound this above by β
2k provided ε′′ ≥ log(2k/β)

`α ;
and this follows from a Chernoff bound

P[|q(S`)− q(S)| ≥ α/2] ≤ e−α
2`
2 .

Once again we can bound this above by β
2k so long as ` ≥

2 log(4k/β)
α2 .

Thus we have, for all q, P[|aq − q(S)| ≥ α] ≤ P[|aq −
q(S`)| ≥ α/2] + P[|q(S`) + q(S)| ≥ α/2] ≤ β/k. The
union bound immediately yields (α, β)-accuracy over all k
queries. From Proposition 11, we also have

(
`
nε
′′)-privacy,

where `
nε
′′ = log(2k/β)

nα . Equivalently, we have ε′-privacy



when n ≥ log(2k/β)
ε′α . With adaptive composition (Proposi-

tion 5), we can answer k queries with (ε, δ)-privacy when
ε′ = ε

2
√

2k log(1/δ)
, resulting in (α, β)-accuracy and (ε, δ)-

privacy on S so long as n >
2
√

2k log(1/δ) log(2k/β)

αε . The
proof is concluded by applying Theorem 7.

4 Sampling counting queries
We now turn to sampling counting queries. Unlike in the
previous section, we cannot leverage an existing transfer the-
orem, so instead we establish a new one.
Theorem 13. LetM be a mechanism that on input sample
S ∼ Dn answers k adaptively chosen sampling counting
queries, is ( α64 ,

αβ
16 )-private for some α, β > 0 and (α/2, 0)-

accurate on S. Suppose further that n ≥ 1024 log(k/β)
α2 . Then

M is (α, β)-accurate on D.
This allows us to answer sampling counting queries:

Theorem 14. There is a mechanism M that satisfies the
following:

1. M takes Õ
(

log
(
k log( 1

β )

α

))
time per query.

2. M is (α, β)-accurate on k sampling counting queries,
where

n ≥ Ω

max


√
k log( 1

αβ )

α2
,

log(k/β)

α2

 .

We prove our transfer theorem using the following mon-
itoring algorithm, which takes as input T sample sets, and
outputs a query with probability proportional to how far
away the query is on the sample as opposed to the distri-
bution.
Definition 15 (Monitor with exponential mechanism). De-
fine a monitoring algorithmWD as the following: Given in-
put S = {S1, . . . , ST }, for each of t ∈ [T ], simulateM(St)
and A interacting, and let qt,1, . . . , qt,k be the queries of A.

Let R = {(qt,i, t)}t∈[T ],i∈[k]. Abusing notation, for each
t and i ∈ [k], consider the corresponding element rt,i of
R and define the utility of rt,i as u(S, rt,i) = |qt,i(St) −
qt,i(D)|. Release r ∈ R with probability proportional to

exp
(
ε·n·u(S,r)

2

)
.

Lemma 16. IfM is (ε, δ)-private for k queries, then WD

is (2ε, δ)-private.

Proof. A single pertubation to S can only change one St, for
some t. Then since M on St is (ε, δ)-private, M remains
(ε, δ)-private over the course of the T simulations. Since A
uses only the outputs of M, A is just post-processing M,
and therefore it is (ε, δ)-private as well: releasing all of R
remains (ε, δ)-private.

Since the sensitivity of u is ∆ = 1/n, the monitor is just
using the exponential mechanism to release some r ∈ R,
which is ε-private. Using the standard composition theorem
finishes the proof.

We can now bound the probability that the query that the
monitor outputs on the sample are far away from the distri-
bution on both sides, if M is not accurate, by using both
Lemmas 8 and 9.

Proof of Theorem 13. Consider the results for simulating T
times the interaction between M and A. Suppose for the
sake of contradiction that M is not (α, β)-accurate on D.
Then for every i in [k] and t in T , since |EM[M(qt,i)] −
q(St)| ≤ α/2, we have

PSt,M,A

[
max
i
|qt,i(St)− qt,i(D)| > α/2

]
> β.

Call some q and t that achieves the maximum |q(St) −
q(D)| over the T independent rounds ofM and A interact-
ing, asWD does, by qw and tw. Since each round t is inde-
pendent, the probability that |qw(Stw) − qw(D)| ≤ α/2 is
then no more than (1−β)T . Then using Markov’s inequality
immediately grants us that

ES,WD
[|qw(Stw)− qw(D)|] > α

2
(1− (1− β)T ). (1)

Let Γ = ES,WD
[|q∗(St∗)− q∗(D)| : (q∗, t∗) =WD(S)].

Setting f(r) = u(S, r), Lemma 9 implies that under the
exponential mechanism, we have

E[|q∗(St∗)− q∗(D)| : (q∗, t∗) =WD(S)]

≥ |qw(Stw)− qw(D)| − 2

εn
log(kT ).

Taking the expected value of both sides with respect to S
and the randomness of the rest ofWD, we obtain

Γ ≥ ES,WD
[|qw(Stw)− qw(D)|]− 2

εn
log(kT )

>
α

2
(1− (1− β)T )− 2

εn
log(kT ), (2)

which follows from employing Equation (1). On the other
hand, suppose that M is (ε, δ)-private for some ε, δ > 0.
Then by Lemma 16,WD is (2ε, δ)-private, and then in turn
Lemma 8 implies that

Γ ≤ e2ε − 1 + Tδ. (3)

We will now ensure (2) ≥ α/8 and (3) ≤ α/8, a contra-
diction. Set T = b 1β c and δ = αβ

16 . Then

e2ε − 1 + Tδ ≤ e2ε − 1 + α/16 ≤ α/8
when e2ε − 1 ≤ α/16, which in turn is satisfied when ε ≤
α/64, since 0 ≤ α ≤ 1.

On the other side, 1− (1− β)b
1
β c ≥ 1/2. Then it suffices

to set ε such that 2
εn log(kT ) ≤ α/8. Thus we need ε such

that
16 log(k/β)

αn
≤ ε ≤ α/64.

Such an ε exists, since we explicitly required n ≥
1024 log(k/β)

α2 .

With a transfer theorem in hand, we now introduce a pri-
vate mechanism that is accurate on a sample for answering
sampling counting queries.



Lemma 17 (SCQ mechanism). For ε ≤ 1, There is an (ε, δ)-
private mechanism to release k SSQs that is (α, 0)-accurate,
for α ≤ 1/2, with respect to a fixed sample S of size n so
long as

n >
2
√

2k log(1/δ)

αε
.

Proof. We design a mechanism M to release a (α, 0)-
accurate SCQ for n > 1

αε and then use Proposition 5. The
mechanism is simple: sample x i.i.d. from S. Then release
q(x) with probability 1−α and 1− q(x) with probability α.
Let i =

∑
x∈S q(x). Then EM[M(q)] = (1−α)i+α(n−i)

n =
i
n + α

(
n−2i
n

)
, so i

n − α ≤ EM[M(q)] ≤ i
n + α, implying

thatM is (α, 0)-accurate on S.
Now let S′ differ from S on one element x, where q(x) =

0 but for x′ ∈ S′, q(x′) = 1. Consider

P[M(S) = 1]

P[M(S′) = 1]
=

(1− α) i+1
n + α(n−i+1

n )

(1− α) in + α(n−in )
= 1+

1− 2α

i− 2αi+ αn
,

for i = 0 to i = n − 1. The other cases are similar. Note
this is at least 1 since 1 − 2α ≥ 0. Thus it suffices to show
when this is upper-bounded by eε. By computing the partial
derivative with respect to i, it is easy to see that it suffices to
consider the cases when i = 0 or i = n− 1. When i = 0,

log

(
P[M(S) = 1]

P[M(S′) = 1]

)
≤ 1− 2α

αn
≤ 1

αn
≤ ε

when n ≥ 1
εα . When i = n− 1,

log

(
P[M(S) = 1]

P[M(S′) = 1]

)
≤ 1− 2α

n(1− α)− (1− 2α)
≤ ε

when n ≥ (1−2α)(ε+1)
(1−α)ε but because 1−2α

1−α ≤ 1, it suffices
to set n ≥ 1 + 1

ε . The proof is completed by noting that
1
εα ≥ 1 + 1

ε because ε ≤ 1.

We now use this mechanism to answer sampling counting
queries.

Proof of Theorem 14. We use the mechanism of Lemma 17.
This gives an (ε, δ)-private mechanism that is (α/2, 0)-

accurate so long as n ≥ 4
√

2k log(1/δ)

αε .
Setting ε and δ as required by Theorem 13 implies that we

need n ≥ Ω
(√

k log( 1
αβ )/α2

)
.

Note to use Theorem 13 we also need n ≥
Ω
(
log(k/β)/α2

)
. The sample complexity bound follows.

This mechanism samples a single random point, which takes
O(log(n)) time, completing the proof.

5 Comparing counting and sampling
counting queries

How do our mechanisms for counting queries and sampling
counting queries compare to each other? Can we use a
mechanism for SCQ’s to simulate a mechanism for count-
ing queries, or vice-versa? We now show that the natural
approach to simulate a counting query with SCQ’s results in

an extraO(1/α) factor (although it does enjoy a slightly bet-
ter dependence on k). This represents a O(1/α) overhead in
order to ensure that the mechanism returns meaningful re-
sults for all sample sizes `.
Proposition 18. Using ` SCQ’s to estimate each count-
ing query is an (α, β)-accurate mechanism for k counting

queries if ` ≥ 2 log(4k/β)
α2 and n = Ω

(√
k log k log3/2( 1

αβ )

α3

)
.

Proof. The mechanism, for each query q, will query the
SCQ mechanism M described in Section 4 ` times with
the query q, and return the average, call this aq . Note that
E[aq] = E[M(q)]. Since each SCQ is independent of each
other, a Chernoff bound gives P[|aq − E[aq]| ≥ α/2] ≤
2e−`α

2/2 ≤ β/2k when ` ≥ 2 log(4k/β)
α2 . Using Theo-

rem 14, as long as n = Ω

(√
k` log( 1

αβ )

α2

)
, we have that

P[maxq |E[M(q)] − q(D)| ≥ α/2] ≤ β/2, over all k`
queries. Then the union bound implies that

P[max
q
|aq − q(D)| ≥ α]

≤ P[max
q
|aq − E[M(q)]|+ |E[M(q)]− q(D)| ≥ α]

≤ β/2 + β/2 ≤ β.
Plugging in ` into the above expression for n completes the
proof.

Meanwhile, it is possible to use a mechanism for counting
queries to attempt to answer SCQ’s, but it has higher sample
complexity than the mechanism for SCQ’s proposed above.
Indeed, there is the naive approach that ignores time con-
straints by first computing q(S) exactly, adding noise to ob-
tain a value ãq , and then returning 1 with probability ãq and
0 otherwise. For this mechanism we obtain an (ε, δ)-private
mechanism to release k SCQ’s that is (α, β)-accurate with
respect to a fixed sample S of size n so long as

n >
2
√

2k log(1/δ) log(1/β)

αε
,

which is strictly worse than the mechanism for SCQ’s we
actually use. This motivates our approach to SCQ’s.

6 Future work
In this paper, we have introduced new faster mechanisms
that take advantage of sampling’s simultaneous ability to
boost privacy while decreasing running time. In what other
adaptive settings can sampling help as much as it does in this
work? Sub-linear time algorithms are frequently required
for a variety of problems, such as property testing or large-
data environments. How can fast algorithms for adaptive
analysis be developed in these types of settings?
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