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Abstract

We show that shift bribery is intractable for the voting sys-
tems of Hare, Coombs, Baldwin, and Nanson.

Introduction
One of the main themes in computational social choice is
to study the complexity of manipulative attacks on voting
systems, in the hope that proving computational hardness
of such attacks may provide some sort of protection against
them. Besides manipulation (also referred to as strategic vot-
ing) and electoral control, much work has been done to study
bribery attacks. For a comprehensive overview, we refer to
the book chapters by Conitzer and Walsh (2016) for manip-
ulation, by Faliszewski and Rothe (2016) for control and
bribery, and by Baumeister and Rothe (2015) for all three
topics.

Bribery in voting was introduced by Faliszewski, Hema-
spaandra, and Hemaspaandra (2009) (see also Faliszewski
et al. (2009)). We will focus on shift bribery, a special case
of swap bribery, which was introduced by Faliszewski et
al. (2009) in the context of so-called irrational voters for
Copeland elections and was then studied in detail by Elkind,
Faliszewski, and Slinko (2009). In swap bribery, the briber
has to pay for each swap of any two candidates in the votes.
Shift bribery additionally requires that swaps always involve
the designated candidate that the briber wants to see win.

Swap bribery generalizes the possible winner problem
(Konczak and Lang 2005; Xia and Conitzer 2011), which
itself is a generalization of unweighted coalitional manipu-
lation. Therefore, each of the many hardness results known
for the possible winner problem is directly inherited by the
swap bribery problem. This was the motivation for Elkind,
Faliszewski, and Slinko (2009) to look at restricted variants
of swap bribery such as shift bribery.

Even though shift bribery also possesses a number of
hardness results (Elkind, Faliszewski, and Slinko 2009),
it has also been shown to allow exact and approximate
polynomial-time algorithms in a number of cases (Elkind,
Faliszewski, and Slinko 2009; Elkind and Faliszewski
2010; Schlotter, Faliszewski, and Elkind 2011). For ex-
ample, Elkind, Faliszewski, and Slinko (2009) provided
a 2-approximation algorithm for shift bribery when using

Borda voting. This result was extended by Elkind and Fal-
iszewski (2010) to all positional scoring rules; they also
obtained somewhat weaker approximations for Copeland
and maximin voting. For Bucklin and fallback voting, the
shift bribery problem is even exactly solvable in polynomial
time (Schlotter, Faliszewski, and Elkind 2011).1 In addition,
Bredereck et al. (2014) analyzed shift bribery in terms of
parameterized complexity.

We study shift bribery for four iterative voting systems
that each proceed in rounds, eliminating after each round the
candidates performing worst: The system of Baldwin (1926)
eliminates the candidates with lowest Borda score and the
system of Nanson (1882) eliminates the candidates whose
score is lower than the average Borda score, while the sys-
tem of Hare (defined, e.g., in the book by Taylor (1995))
eliminates the candidates with lowest plurality score and
the system of Coombs (defined, e.g., in the paper by Levin
and Nalebuff (1995)) eliminates the candidates with lowest
veto score. We show NP-completeness of the shift bribery
problem for each of these iterative voting systems. Our
results complement results by Davies et al. (2014) who
have shown unweighted coalitional manipulation to be NP-
complete for Baldwin and Nanson voting (even with just a
single manipulator)—and also for the underlying Borda sys-
tem (with two manipulators; for the latter result, see also
the paper by Betzler, Niedermeier, and Woeginger (2011)).
Davies et al. (2014) also list various appealing features of
the systems by Baldwin and Nanson, including that they
have been applied in practice (namely, in the State of Michi-
gan in the 1920s, in the University of Melbourne from 1926
through 1982, and in the University of Adelaide since 1968)
and that (unlike Borda) they both are Condorcet-consistent.

Preliminaries
Below, we provide the needed notions and notation.
Elections and voting systems. An election is specified as a
pair (C, V ) with C being a set of candidates and V a profile

1Faliszewski et al. (2015) have complemented these results on
Bucklin and fallback voting. In particular, they studied a number
of bribery problems for these rules, including a variant called “ex-
tension bribery,” which was previously introduced by Baumeister
et al. (2012) in the context of campaign management when the vot-
ers’ ballots are truncated.



of the voters’ preferences over C, typically given by a list of
linear orders of the candidates. A voting system is a function
that maps each election (C, V ) to a subset of C, the win-
ner(s) of the election. An important class of voting systems
is the family of positional scoring rules whose most promi-
nent members are plurality, veto, and Borda count, see, e.g.,
the book chapters by Zwicker (2016) and Baumeister and
Rothe (2015). In plurality, each voter gives her top-ranked
candidate one point; in veto (a.k.a. antiplurality), each voter
gives all except the bottom-ranked candidate one point; in
Borda with m candidates, each candidate in position i of the
voters’ rankings scoresm−i points; and the winners in each
case are those candidates scoring the most points.
Iterative voting systems. The voting systems we study are
based on plurality, veto, and Borda, but their election win-
ner(s) are determined in consecutive rounds. In each round,
all candidates with the lowest score are eliminated.2 If in a
round all remaining candidates have the same score (there
may be only one candidate left), those candidates are pro-
claimed winners of the election. We use four different scor-
ing methods: The voting systems due to Hare, Coombs, and
Baldwin use, respectively, plurality, veto, and Borda scores,
while the Nanson system eliminates in every round all can-
didates that have less than the average Borda score.
Shift bribery. For any given voting system E , we now define
the problem E-SHIFT-BRIBERY, which is a special case of
E-SWAP-BRIBERY, introduced by Faliszewski et al. (2009)
in the context of so-called irrational voters for Copeland and
then comprehensively studied by Elkind, Faliszewski, and
Slinko (2009). Informally stated, given a profile of votes, a
swap-bribery price function exacts a price for each swap of
any two candidates in the votes, and in shift bribery only
swaps involving the designated candidate are allowed.

E -SHIFT-BRIBERY

Given: An election (C, V ) with n votes, a designated can-
didate p ∈ C, a budget B, and a list of price func-
tions ρ = (ρ1, . . . , ρn).

Question: Is it possible to make p the unique E winner of
the election by shifting p in the votes such that the
total price does not exceed B?

Regarding the list of price functions ρ = (ρ1, . . . , ρn)
with ρi : N → N, ρi(k) indicates the price the briber has to
pay in order to move p in vote i by k positions to the top. For
all i, we require that ρi is nondecreasing (ρi(`) ≤ ρi(`+1)),
ρi(0) = 0, and if p is at position r in vote i then ρi(`) =
ρi(` − 1) whenever ` ≥ r. The latter condition ensures that
p can be shifted upward no farther than to the top.

Notation: If a set S ⊆ C of candidates appears in a vote
as
−→
S , its candidates are placed in this position in lexico-

graphical order. By
←−
S we mean the reverse of the lexico-

graphical order of the candidates in S. If S occurs in a vote

2In the original sources stated in the Introduction, certain tie-
breaking schemes are used if more than one candidate has the low-
est score in some round. For the sake of convenience and unifor-
mity, however, we prefer eliminating them all and disregarding tie-
breaking issues in such a case.

without an arrow on top, the order in which the candidates
from S are placed here does not matter for our argument.
Computational complexity. We assume the reader to be fa-
miliar with the standard concepts of complexity theory, in-
cluding the classes P and NP, polynomial-time many-one
reducibility, and NP-hardness and -completeness. We will
use the following well-known NP-complete problem.

EXACT COVER BY 3-SETS (X3C)

Given: Sets X = {x1, . . . , x3m} and S = {S1, . . . , Sn}
such that Si ⊆ X and |Si| = 3 for all Si ∈ S.

Question: Does there exist an exact cover of X , i.e., a subset
S ′ ⊆ S such that |S ′| = m and

⋃
Si∈S′ Si = X?

We assume that each xj ∈ X is contained in exactly three
sets Si ∈ S; thus |X| = |S|. That X3C even with this re-
striction is still NP-hard was shown by Gonzalez (1985).

Hare and Coombs
We start by showing hardness of shift bribery for Hare elec-
tions.

Theorem 1 Hare-SHIFT-BRIBERY is NP-complete.

Proof. Membership of Hare-SHIFT-BRIBERY in NP is
obvious. To prove NP-hardness, we now describe a reduc-
tion from X3C to Hare-SHIFT-BRIBERY. Let (X,S) be a
given X3C instance with X = {x1, . . . , x3m}, m > 1,
and S = {S1, . . . , S3m} with Si ⊆ X and |Si| = 3 for
each i, 1 ≤ i ≤ 3m. Construct from (X,S) a Hare-SHIFT-
BRIBERY instance ((C, V ), p, B, ρ) as follows. The candi-
date set is C = X ∪ S ∪ {p} with designated candidate p,
budget B, and list ρ of price functions. For every Si ∈ S, let
Si = {ai, bi, ci}. The list V of votes is constructed as fol-
lows (the “· · · ” in the table below indicate that the remaining
candidates may occur in any order):

# vote for

1 Si � ai �
−−−−−→
X \ {ai} � · · · 1 ≤ i ≤ 3m

1 Si � bi �
−−−−−→
X \ {bi} � · · · 1 ≤ i ≤ 3m

1 Si � ci �
−−−−−→
X \ {ci} � · · · 1 ≤ i ≤ 3m

4 xi �
−−−−−→
X \ {xi} · · · 1 ≤ i ≤ 3m

1 Si � p � · · · 1 ≤ i ≤ 3m

4 p � · · ·

For voters with votes of the form Si � p � · · · , we use
the price function ρ′(0) = 0, ρ′(1) = 1, and ρ′(t) = B + 1
for all t ≥ 2; and for every other voter, we use the price
function ρ′′ with ρ′′(0) = 0 and ρ′′(t) = B+1 for all t ≥ 1.
Finally, set the budget B = m.

Note that all candidates score exactly four points, so p is
not a unique winner without bribing voters.

We claim that (X,S) is in X3C if and only if
((C, V ), p, B, ρ) is in Hare-SHIFT-BRIBERY.

(⇒) Suppose (X,S) is a yes-instance of X3C. Then there
exists an exact cover S ′ ⊆ S of size m. We now show that it



is possible for p to become a unique Hare winner of an elec-
tion obtained by shifting votes without exceeding the bud-
get B. For every Si ∈ S ′, we bribe the voter with the vote of
the form Si � p � · · · by shifting p once, so her new vote
is of the form p � Si � . . . ; each such bribe action costs us
only 1 from our budget, so the budget will not be exceeded.
In the first round, p now has m + 4 points, every candidate
from S ′ has 3 points, and every other candidate has 4 points.
Therefore, all candidates in S ′ are eliminated. In the second
round, all candidates inX now gain one point from the elim-
ination of S ′, since it is an exact cover. Therefore, p and all
candidates inX proceed to the next round and the remaining
candidates S \S ′ are eliminated. In the next round with only
p and the candidates fromX remaining, p has 3m+4 points,
while every candidate in X scores 7 points (recall that every
xi ∈ X is contained in exactly three members of S). Since
all candidates from X have been eliminated now, p is the
only remaining candidate and thus the unique Hare winner.
(⇐) Suppose (X,S) is a no-instance of X3C. Then no

subset S ′ ⊆ S with |S ′| ≤ m covers X . We now show that
we cannot make p become a unique Hare winner of an elec-
tion obtained by bribing voters without exceeding budgetB.
Note that we can only bribe at most m voters with votes of
the form Si � p � · · · without exceeding the budget. Let
S ′ ⊆ S be such that Si ∈ S ′ exactly if the voter with the
vote Si � p � · · · has been bribed. Clearly, |S ′| ≤ m
and in all those votes p has been shifted once to the left, so
she is now ranked first in these votes. Therefore, p now has
4+|S ′| points and every Si ∈ S ′ scores 3 points. Since every
other candidate scores the same points as before the bribery
(namely, 4 points), the candidates in S ′ are eliminated in the
first round. Let X ′ = {xi ∈ X | xi /∈

⋃
Sj∈S′ Sj} be the

subset of candidates xi ∈ X that are not covered by S ′. We
have X ′ 6= ∅ (otherwise, S ′ would be an exact cover of X).
In the second round, unlike the candidates from X \X ′, the
candidates in X ′ will not gain additional points from elim-
inating the candidates in S ′. Thus, in the current situation,
the candidates from X ′ and S \ S ′ are trailing behind with
4 points each and are eliminated in this round. Therefore, in
the next round, only p and the candidates from X \ X ′ are
remaining in the election. Let x` ∈ X \X ′ be the candidate
from X \ X ′ with the smallest index. Since all candidates
from S are eliminated, p has 3m+4 points and every candi-
date from X \X ′ except x` has 7 points. On the other hand,
x` gains additional points from eliminating the candidates
from X ′; therefore, x` survives this round by scoring more
than 7 points. In the final round with only p and x` remain-
ing, p is eliminated, since 3m · 7 > 3m+4 for m > 1. q

Next, we turn to shift bribery for Coombs elections.

Theorem 2 Coombs-SHIFT-BRIBERY is NP-complete.

Proof. Membership of Coombs-SHIFT-BRIBERY in NP
is obvious. To prove NP-hardness, we now describe a re-
duction from X3C to Coombs-SHIFT-BRIBERY. Let (X,S)
be a given instance of X3C, where X = {x1, . . . , x3m} and
S = {S1, . . . , S3m}. Let Si = {xi,1, xi,2, xi,3}. We con-
struct an election (C, V ) with the set of candidates C =
{p, w, d1, d2, d3} ∪ X ∪ D, where p is the designated can-

didate and D = {d̂i | xi ∈ X}. With price functions ρ′ and
ρ′′, defined as ρ′(0) = 0, ρ′(1) = ρ′(2) = ρ′(3) = 1, and
ρ′(t) = B+1 for all t ≥ 4 and ρ′′(0) = 0 and ρ′′(t) = B+1
for all t ≥ 1, we construct the following list V of votes,
where from now on we omit the symbol � for convenience.

# vote for price fcn.

1 · · · xi,1 xi,2 xi,3 p 1 ≤ i ≤ 3m ρ′

2m · · ·
−−−−−→
D \ {d̂i} d̂i xi 1 ≤ i ≤ 3m ρ′′

2m · · ·
−→
D w d1 d2 d3 ρ′′

1 · · ·
−→
D w X d1 d2 d3 ρ′′

m · · ·
−→
D w ρ′′

The candidates have the following number of vetoes (de-
noted by #vetoes):

candidate #vetoes

p 3m
xi ∈ X 2m
w m

d̂ ∈ D 0
d1 0
d2 0
d3 2m+ 1

Furthermore, our budget is B = m.
We claim that (X,S) is in X3C if and only if

((C, V ), p, B, ρ) is in Coombs-SHIFT-BRIBERY.
(⇒) Assume that (X,S) is in X3C. This means that there

exists a subset S ′ ⊆ S with |S ′| = m and
⋃

Si∈S′
Si = X . So

we have a partition ofX into three sets,X = X1∪X2∪X3,
such that:

X1 = {xi ∈ Si ∈ S ′ | xi has the lowest index in Si },
X3 = {xi ∈ Si ∈ S ′ | xi has the highest index in Si },
X2 = X \ (X1 ∪X3).

Let D = D1 ∪ D2 ∪ D3 be the corresponding par-
tition of D. We bribe the voters with votes of the form
· · · xi,1 xi,2 xi,3 p and Si ∈ S ′ so that they change their
votes to · · · p xi,1 xi,2 xi,3. The candidates then have the
following number of vetoes in the first round:

candidates #vetoes

p 2m
xi,3 ∈ X3 2m+ 1
x ∈ X \X3 2m
w m

d̂ ∈ D 0
d1 0
d2 0
d3 2m+ 1

If a candidate has the highest number of vetoes then she
has the fewest number of points and can not go to the next
round. Here, the candidates in X3 and d3 have the fewest
number of points and are eliminated in this round.

Without the candidates in X3 every candidate in X2 gets
an additional veto and the candidates in D3 each take the



vetoes of the eliminated candidates X3. This leads to the
following number of vetoes for the still-standing candidates
in the second round:

candidate #vetoes

p 2m
xi ∈ X2 2m+ 1
xi ∈ X1 2m
w m

d̂ ∈ D3 2m

d̂ ∈ D \D3 0
d1 0
d2 2m+ 1

In this round, the candidates in X2 and d2 have the fewest
number of points and are eliminated. Similarly to the first
round, vetoes from candidates in X2 and d2 are passed on to
candidates in X1, D1, and d1. Thus the candidates receive
the following number of vetoes in the third round:

candidates #vetoes

p 2m
xi ∈ X1 2m+ 1
w m

d̂ ∈ D2 ∪D3 2m

d̂ ∈ D1 0
d1 2m+ 1

All the candidates xi ∈ X3 and d1 are eliminated in this
third round, so in the next round there is no candidate xi ∈
X and di with 1 ≤ i ≤ 3. It follows that w receives 2m+ 1
additional vetoes in this round, so we have the following
number of vetoes in the fourth round:

candidate #vetoes

p 3m
w 3m+ 1

d̂ 2m

So w has the most vetoes in the fourth round and is elimi-
nated. We need 3m further rounds until p ends up as the last
remaining candidate and sole winner of the election. In each
of these rounds, the candidate d̂ that is still alive and has the
highest index receives at least 2m + 2m + 1 + m vetoes,
while p always gets only 3m vetoes.

(⇐) Suppose that (X,S) is a no-instance for X3C. Ob-
serve that if we want to make p a unique winner of the elec-
tion, we have to bribe at least m voters with a vote of the
form · · · xi,1 xi,2 xi,3 p. If we do not bribe these voters,
p has at least 2m + 1 vetoes and would be eliminated in
the first round. Due to our budget we have to bribe exactly
m such voters and cannot bribe further voters. Let S ′ ⊆ S
be such that Si ∈ S ′ exactly if the voter with the vote of
the form · · · xi,1 xi,2 xi,3 p has been bribed. Assume that
those voters change their vote from · · · xi,1 xi,2 xi,3 p to
· · · p xi,1 xi,2 xi,3 with Si ∈ S ′. Note that |S ′| = m and S ′
does not cover X because we have a no-instance of X3C.
Now p has only 2m vetoes and will not be eliminated in the
first round.

Let X1 be the candidates xi ∈ Si for Si ∈ S ′ with the
smallest index in Si. Let X2 be the candidates xi ∈ Si for

Si ∈ S ′ with the second smallest index in Si. And let X3 be
the candidates xi ∈ Si for Si ∈ S ′ with the highest index
in Si. Note that X1 ∪ X2 ∪ X3 6= X , since S ′ does not
cover X .

For w to have more vetoes than p, the candidates d1, d2,
and d3 need to be eliminated. For that to happen, there must
be three rounds in which no other candidate has more than
2m + 1 vetoes. In the round where di, 1 ≤ i ≤ 3, is elim-
inated, all still-standing candidates in Xi are eliminated as
well. Assume there were three rounds in which 2m+ 1 was
the maximal number of vetoes for a candidate. Then d1, d2,
d3, and all candidates in X1 ∪X2 ∪X3 are eliminated. Note
that those candidates that were not covered by S ′ always
had only 2m vetoes and are still participating in the elec-
tion. Therefore, in the next round, p and w have 3m vetoes
each, the remaining candidates from X have at most 2m+1
vetoes, and the candidates from D have at most 2m vetoes.
So even if p survives the first rounds with the candidates d1,
d2, and d3 still present, she will then surely be eliminated in
the following round. q

Baldwin and Nanson

We now show NP-hardness of shift bribery for Baldwin and
Nanson elections. Note that similar reductions were used by
Davies et al. (2014) to show NP-hardness of the unweighted
manipulation problem for these election systems.

To conveniently construct votes, for a set of candidates C
and c1, c2 ∈ C, let

W(c1,c2) = (c1 c2
−−−−−−−−→
C \ {c1, c2},

←−−−−−−−−
C \ {c1, c2} c1 c2).

Under Borda, from the two votes in W(c1,c2) candidate c1
scores |C| points, c2 scores |C| − 2 points, and all other
candidates score |C| − 1 points. Also, observe that if a can-
didate c∗ ∈ C is eliminated in some round and c∗ /∈ {c1, c2}
then all other candidates lose one point due to the votes in
W(c1,c2). If c∗ = c1 then c2 loses no points but all other
candidates lose one point, and if c∗ = c2 then c1 loses two
points and all other candidates lose one point. Therefore, if
c∗ is eliminated, the point difference caused by this elimina-
tion with respect to the votes in W(c1,c2) remains the same
for all candidates, with two exceptions: (a) If c∗ = c1 then c2
gains a point from every other candidate, and (b) if c∗ = c2
then c1 loses a point to every other candidate.

Theorem 3 Baldwin-SHIFT-BRIBERY is NP-complete.

Proof. Membership of Baldwin-SHIFT-BRIBERY in NP
is obvious. To prove NP-hardness, we reduce the NP-
complete problem X3C to Baldwin-SHIFT-BRIBERY. Let
(X,S) be a given X3C instance, whereX = {x1, . . . , x3m}
and S = {S1, . . . , S3m}. Let Si = {xi,1, xi,2, xi,3}.

We construct an election (C,R) with the set of candidates
C = {p, w, d}∪X ∪S, where p is the designated candidate
and R consists of two lists of votes, R1 and R2. R1 contains
the following votes.



# votes for

1 W(Sj ,p) 1 ≤ j ≤ 3m
2 W(xj,1,Sj) 1 ≤ j ≤ 3m
2 W(xj,2,Sj) 1 ≤ j ≤ 3m
2 W(xj,3,Sj) 1 ≤ j ≤ 3m
2 W(w,xi) 1 ≤ i ≤ 3m
7 W(w,p)

For a preference profile P , let avg(P ) be the aver-
age Borda score of the candidates in P (i.e., avg(P ) =
(|C|−1)|P |

2 ). Then the votes in R1 give the following scores
to the candidates in C:

score(C,R1)(xi) = avg(R1) + 4 for every xi ∈ X,
score(C,R1)(Sj) = avg(R1)− 5 for every Sj ∈ S,
score(C,R1)(p) = avg(R1)− 3m− 7,

score(C,R1)(w) = avg(R1) + 6m+ 7,

score(C,R1)(d) = avg(R1).

Furthermore, R2 contains the following votes.

# votes for

1 W(p,d)

2m+ 1 W(d,Sj) 1 ≤ j ≤ 3m
2m+ 9 W(d,xi) 1 ≤ i ≤ 3m

2m+ 14 W(d,w)

Then the votes in R2 give the following scores to the can-
didates in C:

score(C,R2)(xi) = avg(R2)− (2m+ 9) for every xi ∈ X,
score(C,R2)(Sj) = avg(R2)− (2m+ 1) for every Sj ∈ S,
score(C,R2)(p) = avg(R2) + 1,

score(C,R2)(w) = avg(R2)− (2m+ 14),

score(C,R2)(d) = avg(R2) + 12m2 + 32m+ 13.

Let R = R1 ∪ R2 and avg(R) = avg(R1) + avg(R2).
Then we have the Borda scores for the complete profile R:

score(C,R)(xi) = avg(R)− 2m− 5 for every xi ∈ X,
score(C,R)(Sj) = avg(R)− 2m− 6 for every Sj ∈ S,
score(C,R)(p) = avg(R)− 3m− 6,

score(C,R)(w) = avg(R) + 4m− 7,

score(C,R)(d) = avg(R) + 12m2 + 32m+ 13.

Regarding the price function, for every first vote of
W(Sj ,p) (i.e., a vote of the form Sj p C \ {Sj , p}), let
ρ(1) = 1 and ρ(t) = m + 1 for every t ≥ 2. For every
other vote, let ρ′(t) = m+1 for every t ≥ 1. Finally, we set
the budget B = m. It is easy to see that p is eliminated in
the first round in the election (C,R).

We claim that (X,S) is a yes-instance of X3C if and
only if ((C,R), p, B, ρ) is a yes-instance of Baldwin-SHIFT-
BRIBERY.
(⇒) Suppose there is an exact cover S′ ⊆ S . Then we

bribe the first votes of W(Sj ,p) for every Sj ∈ S′ by shifting

p to the left once. Note that we won’t exceed our budget,
since shifting once costs 1 in those votes and |S′| = m. Ad-
ditionally, for every Sj ∈ S′, the two votes in W(Sj ,p) are
now symmetric to each other and can be disregarded from
now on, as all candidates gain the same number of points
from those votes and all candidates lose the same number of
points if a candidate is eliminated from the election. After
those m votes have been bribed, only the scores of p and ev-
ery Sj ∈ S′ change. With score(C,R)(p) = avg(R)−2m−6
and score(C,R)(Sj) = avg(R) − 2m − 7, all candidates in
S′ are tied for the last place. If any Sj ∈ S′ is eliminated
in a round, the three candidates xj,1, xj,2, and xj,3 will lose
two points more than the candidates of S′\{Sj} that were in
the last position before Sj was eliminated. Therefore, those
three candidates of X will then be in the last position in
the next round. This means that all candidates S′ and every
xi ∈ X that is covered by S′ will be eliminated in the sub-
sequent rounds. Since S′ is an exact cover, now there is no
candidate from X left. Thus the point difference between p
and w is 1 and between p and the remaining Sj ∈ (S \S′) is
−6. Note that p can beat d only if no candidate of C \ {p, d}
is still participating. So in the next round, w is eliminated.
From this p gains seven points on all Sj ∈ (S \S′), so these
are tied for the last place. Therefore, the remaining candi-
dates from S are eliminated, which leaves p and d for the
next and final round, where d is eliminated and p wins the
election alone.

(⇐) Suppose there is no exact cover. Then, for every
S′ ⊆ S with |S′| = m, there is at least one xi ∈ X that
is not covered by S′. It is obvious that at most m of the first
votes ofW(Sj ,p) can be bribed without exceeding the budget.
Without bribing p is on the last place and the point difference
to the second-to-last candidate(s) is dist (C,R)(p, Sj) = m,
1 ≤ j ≤ 3m. By bribing, as explained above, p gains m+1
points on m candidates from S, which then will be elimi-
nated from the election. This leads to the elimination of all
xi ∈ X that are covered by the set S′ ⊆ S of candidates that
were eliminated. Since there is no exact cover, S′ doesn’t
cover X . So there are candidates X ′ ⊆ X , |X ′| ≥ 1, who
were not eliminated before, as for every candidate xi ∈ X ′
all three candidates Sj ∈ (S\S′) with xi ∈ Sj are still in the
election. With the candidates C1 = {p, w, d}∪(S \S′)∪X ′
still standing, the point differences of p to the other remain-
ing candidates are as follows:

dist (C1,V )(p, d) = −2m+ 1− 2m(2m+ 1)

−|X ′|(2m+ 9)− (2m+ 14) < 0,

dist (C1,V )(p, w) = 1− 2|X ′| < 0,

dist (C1,V )(p, xi) = −1 for every xi ∈ X ′, and

dist (C1,V )(p, Sj) < −12 for everySj ∈ S \ S′.

Therefore, p is on the last place and is eliminated. q

Finally, we turn to Nanson elections. The reduction below
will only use pair of votesW(c1,c2). The average Borda score
for those two votes is |C| − 1. c1 scores one point more than
the average and c2 scores one point fewer than the average.
The other candidates score exactly the average Borda score.



If a candidate is eliminated in a round, the average Borda
score required to survive the next round decreases by one.
Regardless of which candidate is eliminated, all remaining
candidates that are not c1 or c2 lose one point and still have
exactly the average Borda score. If c2 is eliminated, c1 loses
its advantage over the average and now scores exactly the
average Borda score as well. If one of the other candidates
is eliminated, c1 continues to have one point more than the
average Borda score. This is analogous for c2: If c1 is elim-
inated, c2 scores the average Borda score, and if one of the
other candidates is eliminated, c2 still has one point fewer
than the average Borda score.
Theorem 4 Nanson-SHIFT-BRIBERY is NP-complete.
Proof. Membership of Nanson-SHIFT-BRIBERY in NP
is obvious. To prove NP-hardness, we reduce the NP-
complete problem X3C to Nanson-SHIFT-BRIBERY. Let
(X,S) be a given X3C instance, whereX = {x1, . . . , x3m}
and S = {S1, . . . , S3m}. Let Si = {xi,1, xi,2, xi,3}.

We construct an election (C,R) with the set of candidates
C = {p, w1, w2, d} ∪ X ∪ S, where p is the designated
candidate. Then we construct two sets of votes, R1 and R2.
R1 contains the following votes.

# votes for

1 W(Sj ,p) 1 ≤ j ≤ 3m
1 W(xi,p) 1 ≤ i ≤ 3m
1 W(xj,1,Sj) 1 ≤ j ≤ 3m
1 W(xj,2,Sj) 1 ≤ j ≤ 3m
1 W(xj,3,Sj) 1 ≤ j ≤ 3m
4 W(Sj ,w1) 1 ≤ j ≤ 3m

15m W(w1,w2)

3m W(p,w1)

Furthermore, R2 contains the following votes.
# votes for

2m W(p,d)

2 W(d,Sj) 1 ≤ j ≤ 3m
4 W(d,xi) 1 ≤ i ≤ 3m

Let R = R1 ∪ R2. Then we have the following Borda
scores for the complete profile R:

score(C,R)(xi) = avg(R) for every xi ∈ X,
score(C,R)(Sj) = avg(R) for every Sj ∈ S,
score(C,R)(p) = avg(R)−m,

score(C,R)(w1) = avg(R),

score(C,R)(w2) = avg(R)− 15m,

score(C,R)(d) = avg(R) + 16m.

The price function is again defined as follows. For every
first vote ofW(Sj ,p) (i.e., a vote of the form Sj p C\{Sj , p}),
let ρ(1) = 1 and ρ(t) = m + 1 for every t ≥ 2. For every
other vote, let ρ′(t) = m+1 for every t ≥ 1. Finally, we set
the budget B = m. It is easy to see that p is eliminated in
the first round in the election (C,R).

We claim that (X,S) is a yes-instance of X3C if and
only if ((C,R), p, B, ρ) is a yes-instance of Nanson-SHIFT-
BRIBERY.

(⇒) Suppose there is an exact cover S′ ⊆ S. Then, for
every Sj ∈ S′, we bribe the first vote of W(Sj ,p) by shift-
ing p to the left once in all those votes. Note that we won’t
exceed our budget, since this bribe action costs 1 per vote
and |S′| = m. With the additional m points p reaches the
average Borda score and is not eliminated in the first round.
However, all candidates in S′ lose one point and are elimi-
nated. Additionally, w2 will be eliminated as well.

In the next round, w1 will be eliminated, since she has
11m points fewer than the average score required to survive
this round. Since the candidates in S′ were eliminated in the
last round and S′ is an exact cover, every candidate in X
now has fewer points than the average and is eliminated.

In the third round, only p, d, and the candidates in S \ S′
are still standing. Therefore, the only pairs of votes that are
not symmetric are W(Sj ,p), twice W(d,Sj) for every Sj ∈
(S \ S′), and 2m pairs of W(p,d). Since |S \ S′| = 2m, we
have that p scores exactly the average score and survives this
round, just as d. Every Sj ∈ (S \ S′) has one point fewer
than the average and is eliminated. This leaves only p and d
in the last round, which p wins.

(⇐) Suppose there is no exact cover. Then, for every S′ ⊆
S with |S′| = m, there is at least one xi ∈ X that is not
covered by S′. Note that we can only bribe the first votes of
any W(Sj ,p) without exceeding the budget. For p to survive
the first round, we need to bribe m of those votes by shifting
p to the left once. Let S′ ⊆ S be such that S′ contains Sj

exactly if the first vote of W(Sj ,p) has been bribed. Then
every Sj ∈ S′ has a score of avg(R)−1 and p has a score of
avg(R). Therefore, in the first round, every candidate from
S′ and w2 are eliminated from the election.

In the second round, w1 will be eliminated because of the
15m pairs of votesW(w1,w2) and the elimination of w2. Fur-
thermore, a candidate xi ∈ X reaches the average score with
p and d still standing only if all three Sj ∈ S with xi ∈ Sj

are also not yet eliminated. Since the candidates in S′ were
eliminated in the previous round, for every Sj ∈ S′, all three
xi ∈ Sj will be eliminated in this round. Since S′ is not an
exact cover, there are candidates X ′ ⊆ X that survive this
round. d also reaches the average, as there are 2m candidates
S \ S′ and those candidates S \ S′ survive because of w1.

In the next round, the candidates still standing are p, d,
X ′, and S \ S′. Because |X ′| ≥ 1, candidate p has |X ′|
points fewer than the average score and is eliminated in this
round. q

Conclusions and Open Questions
We have shown that shift bribery is NP-complete for each of
the iterative voting systems of Hare, Coombs, Baldwin, and
Nanson. While these are interesting theoretical results com-
plementing earlier work both on shift bribery and on these
voting systems, NP-hardness of course has its limitations in
terms of providing protection in practice. It would be inter-
esting to also study shift bribery for these systems in terms
of approximation and parameterized complexity.
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