Abstract
When a 3D scene is captured in several 2D images, a compact description (or parameters) of the 3D scene can be estimated from the images. Such an inference is formulated as the inverse of rendering computer graphics and is important for various applications, such as object recognition, inspection, and/or VR. In the present paper, we extend a photometric stereo method in such a way as to estimate the texture of the object in addition to previous estimation of parameters describing the objects and light sources. To do so, we need a realistic minimization method, combined with a method to obtain the Jacobian of the cost function with respect to the texture. We implemented this method and verified the validity of the framework using synthetic and real-world data.
Supported by JSPS KAKENHI Grant Number 20K11866.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Nasu, T., Migita, T., Takahashi, N.: Uncalibrated photometric stereo using superquadrics with cast shadow. In: Jeong, H., Sumi, K. (eds.) IW-FCV 2021. CCIS, vol. 1405, pp. 267–280 (2021)
Nasu, T., Migita, T., Shakunaga, T., Takahashi, N.: Uncalibrated photometric stereo using quadric surfaces with two cameras. In: Ohyama, W., Jung, S.K. (eds.) IW-FCV 2020. CCIS, vol. 1212, pp. 318–332 (2020)
Ramamoorthi, R., Hanrahan, P.: A signal-processing framework for inverse rendering. In: SIGGRAPH 2001, pp. 117–128 (2001)
Shi, B., Mo, Z., Wu, Z., Duan, D., Yeung, S.-K., Tan, P.: A benchmark dataset and evaluation for non-lambertian and uncalibrated photometric stereo. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 41(2), 271–284 (2019)
Migita, T., Ogino, S., Shakunaga, T.: Direct bundle estimation for recovery of shape, reflectance property and light position. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 412–425. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_31
Belhumeur, P.N., Kriegman, D.J., Yuille, A.L.: The bas-relief ambiguity. Int. J. Comput. Vision 35(1), 33–44 (1999)
Matusik, W., Pfister, H., Brand, M., McMillan, L.: A data-driven reflectance model. ACM Trans. Graph. 22(3), 759–769 (2003)
Paschalidou, D, Van Gool, L., Geiger, A.: Learning unsupervised hierarchical part decomposition of 3D objects from a single RGB image. In: Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Barr, A.H.: Superquadrics and angle-preserving transformations. IEEE Comput. Graphics Appl. 1(1), 11–23 (1981)
https://docs.microsoft.com/en-us/windows/win32/direct3d12/direct3d-12-graphics
Koppal, S.J.: Lambertian reflectance. In: Ikeuchi, K. (ed.) Computer Vision. Springer, Boston (2014). https://doi.org/10.1007/978-0-387-31439-6_534
Blinn, J.F.: Models of light reflection for computer synthesized pictures. In: Proceedings of 4th Annual Conference on Computer Graphics and Interactive Techniques, pp. 192–198 (1977)
Liu, S., Li, T., Chen, W., Li, H.: Soft rasterizer: a differentiable renderer for image-based 3D reasoning. In: Proceedings of International Conference on Computer Vision (2019)
Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2(2), 164–168 (1944)
Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11(2), 431–441 (1963)
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
Diebel, J.: Representing attitude: euler angles, unit quaternions, and rotation vectors. Technical report, Stanford University (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Migita, T., Okada, A., Takahashi, N. (2022). Uncalibrated Photometric Stereo Using Superquadrics with Texture Estimation. In: Sumi, K., Na, I.S., Kaneko, N. (eds) Frontiers of Computer Vision. IW-FCV 2022. Communications in Computer and Information Science, vol 1578. Springer, Cham. https://doi.org/10.1007/978-3-031-06381-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-06381-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06380-0
Online ISBN: 978-3-031-06381-7
eBook Packages: Computer ScienceComputer Science (R0)