Skip to main content

Uncalibrated Photometric Stereo Using Superquadrics with Texture Estimation

  • Conference paper
  • First Online:
Frontiers of Computer Vision (IW-FCV 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1578))

Included in the following conference series:

  • 601 Accesses

Abstract

When a 3D scene is captured in several 2D images, a compact description (or parameters) of the 3D scene can be estimated from the images. Such an inference is formulated as the inverse of rendering computer graphics and is important for various applications, such as object recognition, inspection, and/or VR. In the present paper, we extend a photometric stereo method in such a way as to estimate the texture of the object in addition to previous estimation of parameters describing the objects and light sources. To do so, we need a realistic minimization method, combined with a method to obtain the Jacobian of the cost function with respect to the texture. We implemented this method and verified the validity of the framework using synthetic and real-world data.

Supported by JSPS KAKENHI Grant Number 20K11866.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 67.40
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 84.39
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nasu, T., Migita, T., Takahashi, N.: Uncalibrated photometric stereo using superquadrics with cast shadow. In: Jeong, H., Sumi, K. (eds.) IW-FCV 2021. CCIS, vol. 1405, pp. 267–280 (2021)

    Google Scholar 

  2. Nasu, T., Migita, T., Shakunaga, T., Takahashi, N.: Uncalibrated photometric stereo using quadric surfaces with two cameras. In: Ohyama, W., Jung, S.K. (eds.) IW-FCV 2020. CCIS, vol. 1212, pp. 318–332 (2020)

    Google Scholar 

  3. Ramamoorthi, R., Hanrahan, P.: A signal-processing framework for inverse rendering. In: SIGGRAPH 2001, pp. 117–128 (2001)

    Google Scholar 

  4. Shi, B., Mo, Z., Wu, Z., Duan, D., Yeung, S.-K., Tan, P.: A benchmark dataset and evaluation for non-lambertian and uncalibrated photometric stereo. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 41(2), 271–284 (2019)

    Article  Google Scholar 

  5. Migita, T., Ogino, S., Shakunaga, T.: Direct bundle estimation for recovery of shape, reflectance property and light position. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 412–425. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_31

    Chapter  Google Scholar 

  6. Belhumeur, P.N., Kriegman, D.J., Yuille, A.L.: The bas-relief ambiguity. Int. J. Comput. Vision 35(1), 33–44 (1999)

    Article  Google Scholar 

  7. Matusik, W., Pfister, H., Brand, M., McMillan, L.: A data-driven reflectance model. ACM Trans. Graph. 22(3), 759–769 (2003)

    Article  Google Scholar 

  8. Paschalidou, D, Van Gool, L., Geiger, A.: Learning unsupervised hierarchical part decomposition of 3D objects from a single RGB image. In: Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  9. Barr, A.H.: Superquadrics and angle-preserving transformations. IEEE Comput. Graphics Appl. 1(1), 11–23 (1981)

    Article  MathSciNet  Google Scholar 

  10. https://docs.microsoft.com/en-us/windows/win32/direct3d12/direct3d-12-graphics

  11. Koppal, S.J.: Lambertian reflectance. In: Ikeuchi, K. (ed.) Computer Vision. Springer, Boston (2014). https://doi.org/10.1007/978-0-387-31439-6_534

    Chapter  Google Scholar 

  12. Blinn, J.F.: Models of light reflection for computer synthesized pictures. In: Proceedings of 4th Annual Conference on Computer Graphics and Interactive Techniques, pp. 192–198 (1977)

    Google Scholar 

  13. Liu, S., Li, T., Chen, W., Li, H.: Soft rasterizer: a differentiable renderer for image-based 3D reasoning. In: Proceedings of International Conference on Computer Vision (2019)

    Google Scholar 

  14. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2(2), 164–168 (1944)

    Article  MathSciNet  Google Scholar 

  15. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11(2), 431–441 (1963)

    Article  MathSciNet  Google Scholar 

  16. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  17. Diebel, J.: Representing attitude: euler angles, unit quaternions, and rotation vectors. Technical report, Stanford University (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Migita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Migita, T., Okada, A., Takahashi, N. (2022). Uncalibrated Photometric Stereo Using Superquadrics with Texture Estimation. In: Sumi, K., Na, I.S., Kaneko, N. (eds) Frontiers of Computer Vision. IW-FCV 2022. Communications in Computer and Information Science, vol 1578. Springer, Cham. https://doi.org/10.1007/978-3-031-06381-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06381-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06380-0

  • Online ISBN: 978-3-031-06381-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics