Skip to main content

Presburger Büchi Tree Automata with Applications to Logics with Expressive Counting

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2022)

Abstract

We introduce two versions of Presburger Automata with the Büchi acceptance condition, working over infinite, finite-branching trees. These automata, in addition to the classical ones, allow nodes for checking linear inequalities over labels of their children. We establish tight \(\textsc {NP}\) and \(\textsc {ExpTime}\) bounds on the complexity of the non-emptiness problem for the presented machines. We demonstrate the usefulness of our automata models by polynomially encoding the two-variable guarded fragment extended with Presburger constraints, improving the existing triply-exponential upper bound to a single exponential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Constraints with \(\equiv _k\) can be eliminated [4].

  2. 2.

    Of course we may always restrict ourselves to binary trees by employing standard tricks, but then the verification of Presburger constraints becomes a challenge.

  3. 3.

    In the literature \(\mathcal {S}\) appears under the name of a syntactic closure.

References

  1. Baader, F.: A new description logic with set constraints and cardinality constraints on role successors. In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 43–59. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66167-4_3

    Chapter  Google Scholar 

  2. Baader, F., Hladik, J., Peñaloza, R.: Automata can show PSPACE results for description logics. Inf. Comput. 206, 1045–1056 (2008)

    Article  Google Scholar 

  3. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  4. Bednarczyk, B.: One-variable logic meets Presburger arithmetic. Theor. Comput. Sci. 802, 141–146 (2020)

    Article  Google Scholar 

  5. Bednarczyk, B., Orlowska, M., Pacanowska, A., Tan, T.: On classical decidable logics extended with percentage quantifiers and arithmetics. In: FSTTCS 2021 (2021)

    Google Scholar 

  6. Boiret, A., Hugot, V., Niehren, J., Treinen, R.: Automata for unordered trees. Inf. Comput. 253, 304–335 (2017)

    Article  Google Scholar 

  7. Boiret, A., Hugot, V., Niehren, J., Treinen, R.: Logics for unordered trees with data constraints. J. Comput. Syst. Sci. 104, 149–164 (2019)

    Article  Google Scholar 

  8. Bonatti, P.A., Lutz, C., Murano, A., Vardi, M.Y.: The complexity of enriched mu-calculi. Log. Methods Comput. Sci. (2008)

    Google Scholar 

  9. Boneva, I., Talbot, J.-M.: Automata and logics for unranked and unordered trees. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 500–515. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3_36

    Chapter  Google Scholar 

  10. Borosh, I., Flahive, M., Treybig, B.: Small solutions of linear Diophantine equations. Discret. Math 58, 215–220 (1986)

    Article  Google Scholar 

  11. Calvanese, D., Carbotta, D., Ortiz, M.: A practical automata-based technique for reasoning in expressive description logics. In: Walsh, T. (ed.) IJCAI 2011 (2011)

    Google Scholar 

  12. Calvanese, D., Eiter, T., Ortiz, M.: Answering regular path queries in expressive description logics via alternating tree-automata. Inf. Comput. 237, 12–55 (2014)

    Article  Google Scholar 

  13. Chandra, A.K., Stockmeyer, L.J.: Alternation. In: FOCS 1976 (1976)

    Google Scholar 

  14. Comon, H., et al.: Tree automata techniques and applications (2008)

    Google Scholar 

  15. Demri, S., Lugiez, D.: Complexity of modal logics with Presburger constraints. J. Appl. Log. 8, 233–252 (2010)

    Article  Google Scholar 

  16. Eisenbrand, F., Shmonin, G.: Carathéodory bounds for integer cones. Oper. Res. Lett. 34, 564–568 (2006)

    Article  Google Scholar 

  17. El-Sappagh, S., Franda, F., Ali, F., Kwak, K.S.: SNOMED CT standard ontology based on the ontology for general medical science. BMC Med. Inform. Decis. Making 18, 1–19 (2018)

    Article  Google Scholar 

  18. Grädel, E.: Description logics and guarded fragments of first order logic. In: DL (1998)

    Google Scholar 

  19. Kupke, C., Pattinson, D.: On modal logics of linear inequalities. In: Beklemishev, L.D., Goranko, V., Shehtman, V.B. (eds.) AIML 2010 (2010)

    Google Scholar 

  20. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)

    Book  Google Scholar 

  21. Papadimitriou, C.H.: On the complexity of integer programming. J. ACM (JACM) 28, 765–768 (1981)

    Article  Google Scholar 

  22. Schwentick, T.: Trees, automata and XML. In: Beeri, C., Deutsch, A. (eds.) PODS 2004 (2004)

    Google Scholar 

  23. Seidl, H., Schwentick, T., Muscholl, A.: Counting in trees. In: Flum, J., Grädel, E., Wilke, T. (eds.) Logic and Automata: History and Perspectives [in Honor of Wolfgang Thomas] (2008)

    Google Scholar 

  24. Sipser, M.: Introduction to the theory of computation. ACM Sigact News 27, 27–29 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Polish Ministry of Science and Higher Education program “Diamentowy Grant” no. DI2017 006447. We are grateful to Tim Lyon and Reijo Jaakkola for proofreading and language improvements.

Results from this paper will appear in the BSc thesis of Oskar Fiuk, written under informal supervision of Bartosz Bednarczyk at the University of Wrocław. Oskar Fiuk was supported by NCN grant No. 2021/41/B/ST6/00996.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz Bednarczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bednarczyk, B., Fiuk, O. (2022). Presburger Büchi Tree Automata with Applications to Logics with Expressive Counting. In: Ciabattoni, A., Pimentel, E., de Queiroz, R.J.G.B. (eds) Logic, Language, Information, and Computation. WoLLIC 2022. Lecture Notes in Computer Science, vol 13468. Springer, Cham. https://doi.org/10.1007/978-3-031-15298-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15298-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15297-9

  • Online ISBN: 978-3-031-15298-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics