Skip to main content

Linearizing Partial Search Orders

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13453))

Included in the following conference series:

Abstract

In recent years, questions about the construction of special orderings of a given graph search were studied by several authors. On the one hand, the so called end-vertex problem introduced by Corneil et al. in 2010 asks for search orderings ending in a special vertex. On the other hand, the problem of finding orderings that induce a given search tree was introduced already in the 1980s s by Hagerup and received new attention most recently by Beisegel et al. Here, we introduce a generalization of some of these problems by studying the question whether there is a search ordering that is a linear extension of a given partial order on a graph’s vertex set. We show that this problem can be solved in polynomial time on chordal bipartite graphs for LBFS, which also implies the first polynomial-time algorithms for the end-vertex problem and two search tree problems for this combination of graph class and search. Furthermore, we present polynomial-time algorithms for LBFS and MCS on split graphs, which generalize known results for the end-vertex and search tree problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 60.98
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 78.06
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beisegel, J., et al.: Recognizing graph search trees. Preprint on arXiv (2018). https://doi.org/10.48550/arXiv.1811.09249

  2. Beisegel, J., et al.: On the End-Vertex Problem of Graph Searches. Discrete Math. Theor. Comput. Sci. 21(1) (2019). https://doi.org/10.23638/DMTCS-21-1-13

  3. Beisegel, J., et al.: Recognizing graph search trees. In: Proceedings of Lagos 2019, the tenth Latin and American Algorithms, Graphs and Optimization Symposium. ENTCS, vol. 346, pp. 99–110. Elsevier (2019). https://doi.org/10.1016/j.entcs.2019.08.010

  4. Beisegel, J., et al.: The recognition problem of graph search trees. SIAM J. Discrete Math. 35(2), 1418–1446 (2021). https://doi.org/10.1137/20M1313301

    Article  MathSciNet  MATH  Google Scholar 

  5. Berry, A., Blair, J.R., Heggernes, P., Peyton, B.W.: Maximum cardinality search for computing minimal triangulations of graphs. Algorithmica 39(4), 287–298 (2004). https://doi.org/10.1007/s00453-004-1084-3

    Article  MathSciNet  MATH  Google Scholar 

  6. Bretscher, A., Corneil, D., Habib, M., Paul, C.: A simple linear time LexBFS cograph recognition algorithm. SIAM J. Discrete Math. 22(4), 1277–1296 (2008). https://doi.org/10.1137/060664690

    Article  MathSciNet  MATH  Google Scholar 

  7. Charbit, P., Habib, M., Mamcarz, A.: Influence of the tie-break rule on the end-vertex problem. Discrete Math. Theor. Comput. Sci. 16(2), 57 (2014). https://doi.org/10.46298/dmtcs.2081

  8. Chu, F.P.M.: A simple linear time certifying LBFS-based algorithm for recognizing trivially perfect graphs and their complements. Inf. Process. Lett. 107(1), 7–12 (2008). https://doi.org/10.1016/j.ipl.2007.12.009

    Article  MathSciNet  MATH  Google Scholar 

  9. Corneil, D.G., Dusart, J., Habib, M., Mamcarz, A., De Montgolfier, F.: A tie-break model for graph search. Discrete Appl. Math. 199, 89–100 (2016). https://doi.org/10.1016/j.dam.2015.06.011

    Article  MathSciNet  MATH  Google Scholar 

  10. Corneil, D.G., Köhler, E., Lanlignel, J.M.: On end-vertices of lexicographic breadth first searches. Discrete Appl. Math. 158(5), 434–443 (2010). https://doi.org/10.1016/j.dam.2009.10.001

    Article  MathSciNet  MATH  Google Scholar 

  11. Corneil, D.G., Krueger, R.M.: A unified view of graph searching. SIAM J. Discrete Math. 22(4), 1259–1276 (2008). https://doi.org/10.1137/050623498

    Article  MathSciNet  MATH  Google Scholar 

  12. Corneil, D.G., Olariu, S., Stewart, L.: The LBFS structure and recognition of interval graphs. SIAM J. Discrete Math. 23(4), 1905–1953 (2009). https://doi.org/10.1137/S0895480100373455

    Article  MathSciNet  MATH  Google Scholar 

  13. Dusart, J., Habib, M.: A new LBFS-based algorithm for cocomparability graph recognition. Discrete Appl. Math. 216, 149–161 (2017). https://doi.org/10.1016/j.dam.2015.07.016

    Article  MathSciNet  MATH  Google Scholar 

  14. Gorzny, J., Huang, J.: End-vertices of LBFS of (AT-free) bigraphs. Discrete Appl. Math. 225, 87–94 (2017). https://doi.org/10.1016/j.dam.2017.02.027

    Article  MathSciNet  MATH  Google Scholar 

  15. Hagerup, T.: Biconnected graph assembly and recognition of DFS trees. Technical report A 85/03, Universität des Saarlandes (1985). https://doi.org/10.22028/D291-26437

  16. Hagerup, T., Nowak, M.: Recognition of spanning trees defined by graph searches. Technical report A 85/08, Universität des Saarlandes (1985)

    Google Scholar 

  17. Hopcroft, J., Tarjan, R.E.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974). https://doi.org/10.1145/321850.321852

    Article  MathSciNet  MATH  Google Scholar 

  18. Krueger, R., Simonet, G., Berry, A.: A general label search to investigate classical graph search algorithms. Discrete Appl. Math. 159(2–3), 128–142 (2011). https://doi.org/10.1016/j.dam.2010.02.011

    Article  MathSciNet  MATH  Google Scholar 

  19. Kumar, P.S., Madhavan, C.E.V.: Minimal vertex separators of chordal graphs. Discrete Appl. Math. 89(1), 155–168 (1998). https://doi.org/10.1016/S0166-218X(98)00123-1

    Article  MathSciNet  MATH  Google Scholar 

  20. Rong, G., Cao, Y., Wang, J., Wang, Z.: Graph searches and their end vertices. Algorithmica (2022). https://doi.org/10.1007/s00453-022-00981-5

    Article  MathSciNet  MATH  Google Scholar 

  21. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976). https://doi.org/10.1137/0205021

    Article  MathSciNet  MATH  Google Scholar 

  22. Scheffler, R.: Linearizing partial search orders. Preprint on arXiv (2022). https://doi.org/10.48550/arXiv.2206.14556

  23. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13(3), 566–579 (1984). https://doi.org/10.1137/0213035

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Scheffler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Scheffler, R. (2022). Linearizing Partial Search Orders. In: Bekos, M.A., Kaufmann, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2022. Lecture Notes in Computer Science, vol 13453. Springer, Cham. https://doi.org/10.1007/978-3-031-15914-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15914-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15913-8

  • Online ISBN: 978-3-031-15914-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics