Skip to main content

Function MRI Representation Learning via Self-supervised Transformer for Automated Brain Disorder Analysis

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13583))

Included in the following conference series:

Abstract

Major depressive disorder (MDD) is a prevalent mental health disorder whose neuropathophysiology remains unclear. Resting-state functional magnetic resonance imaging (rs-fMRI) has been used to capture abnormality or dysfunction functional connectivity networks for automated MDD detection. A functional connectivity network (FCN) of each subject derived from rs-fMRI data can be modeled as a graph consisting of nodes and edges. Graph neural networks (GNNs) play an important role in learning representations of graph-structured data by gradually updating and aggregating node features for brain disorder analysis. However, using one single GNN layer focuses on local graph structure around each node and stacking multiple GNN layers usually leads to the over-smoothing problem. To this end, we propose a transformer-based functional MRI representation learning (TRL) framework to encode global spatial information of FCNs for MDD diagnosis. Experimental results on 282 MDD patients and 251 healthy control (HC) subjects demonstrate that our method outperforms several competing methods in MDD identification based on rs-fMRI data. Besides, based on our learned fully connected graphs, we can detect discriminative functional connectivities in MDD vs. HC classification, providing potential fMRI biomarkers for MDD analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 67.40
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 84.39
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Organization, W.H., et al.: Depression and other common mental disorders: global health estimates. World Health Organization, Technical report (2017)

    Google Scholar 

  2. Bains, N., Abdijadid, S.: Major depressive disorder. In: StatPearls [Internet]. StatPearls Publishing (2021)

    Google Scholar 

  3. Kessler, R.C., Berglund, P., Demler, O., Jin, R., Merikangas, K.R., Walters, E.E.: Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. General Psychiatry 62(6), 593–602 (2005)

    Article  Google Scholar 

  4. Otte, C., et al.: Major depressive disorder. Nat. Rev. Dis. Primers 2(1), 1–20 (2016)

    Article  Google Scholar 

  5. Alexopoulos, G.S.: Depression in the elderly. The Lancet 365(9475), 1961–1970 (2005)

    Article  Google Scholar 

  6. Edition, F., et al.: Diagnostic and statistical manual of mental disorders. Am. Psychiatr. Assoc. 21, 591–643 (2013)

    Google Scholar 

  7. Papakostas, G.I.: Managing partial response or nonresponse: switching, augmentation, and combination strategies for major depressive disorder. J. Clin. Psychiatry 70(suppl 6), 11183 (2009)

    Article  Google Scholar 

  8. Bürger, C., et al.: Differential abnormal pattern of anterior cingulate gyrus activation in unipolar and bipolar depression: an fMRI and pattern classification approach. Neuropsychopharmacology 42(7), 1399–1408 (2017)

    Article  Google Scholar 

  9. Ktena, S.I., et al.: Metric learning with spectral graph convolutions on brain connectivity networks. NeuroImage 169, 431–442 (2018)

    Article  Google Scholar 

  10. Qiao, L., Zhang, L., Chen, S., Shen, D.: Data-driven graph construction and graph learning: a review. Neurocomputing 312, 336–351 (2018)

    Article  Google Scholar 

  11. Cheng, B., Liu, M., Zhang, D., Shen, D.: Robust multi-label transfer feature learning for early diagnosis of Alzheimer’s disease. Brain Imaging Behav. 13(1), 138–153 (2019). https://doi.org/10.1007/s11682-018-9846-8

    Article  Google Scholar 

  12. Guan, H., Liu, M.: Domain adaptation for medical image analysis: a survey. IEEE Trans. Biomed. Eng. 69, 1173–1185 (2022)

    Article  Google Scholar 

  13. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24 (2020)

    Article  MathSciNet  Google Scholar 

  14. Zhou, J., et al.: Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020)

    Article  Google Scholar 

  15. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  16. Hamilton, W.L.: Graph representation learning. Synth. Lect. Artif. Intell. Mach. Learn. 14(3), 1–159 (2020)

    MATH  Google Scholar 

  17. Yao, D., et al.: A mutual multi-scale triplet graph convolutional network for classification of brain disorders using functional or structural connectivity. IEEE Trans. Med. Imaging 40(4), 1279–1289 (2021)

    Article  Google Scholar 

  18. Yan, C.C., et al.: Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proc. Natl. Acad. Sci. 116(18), 9078–9083 (2019)

    Article  Google Scholar 

  19. Yan, C., Zang, Y.: DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. 4, 13 (2010)

    Google Scholar 

  20. Yan, C.G., Wang, X.D., Zuo, X.N., Zang, Y.F.: DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics 14(3), 339–351 (2016). https://doi.org/10.1007/s12021-016-9299-4

    Article  Google Scholar 

  21. Sporns, O.: Graph theory methods: applications in brain networks. Dialogues Clin. Neurosci. (2022)

    Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  23. Wee, C.Y., et al.: Identification of MCI individuals using structural and functional connectivity networks. NeuroImage 59(3), 2045–2056 (2012)

    Article  Google Scholar 

  24. Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, Cham (2009). https://doi.org/10.1007/978-0-387-21606-5

    Book  MATH  Google Scholar 

  25. Kawahara, J., et al.: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage 146, 1038–1049 (2017)

    Article  Google Scholar 

  26. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  27. Kang, E.K., Lee, K.S., Lee, S.H.: Reduced cortical thickness in the temporal pole, insula, and pars triangularis in patients with panic disorder. Yonsei Med. J. 58(5), 1018–1024 (2017)

    Article  Google Scholar 

  28. Yang, Z., Guo, H., Ji, S., Li, S., Fu, Y., Guo, M., Yao, Z.: Reduced dynamics in multivariate regression-based dynamic connectivity of depressive disorder. In: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1197–1201. IEEE (2020)

    Google Scholar 

  29. Yang, X.H., et al.: Diminished caudate and superior temporal gyrus responses to effort-based decision making in patients with first-episode major depressive disorder. Progress Neuro-Psychopharmacol. Biol. Psychiatry 64, 52–59 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

Q. Wang and L. Qiao were supported in part by Taishan Scholar Program of Shandong Province and National Natural Science Foundation of China (Nos. 62176112, 61976110 and 11931008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lishan Qiao or Mingxia Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 109 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Q., Qiao, L., Liu, M. (2022). Function MRI Representation Learning via Self-supervised Transformer for Automated Brain Disorder Analysis. In: Lian, C., Cao, X., Rekik, I., Xu, X., Cui, Z. (eds) Machine Learning in Medical Imaging. MLMI 2022. Lecture Notes in Computer Science, vol 13583. Springer, Cham. https://doi.org/10.1007/978-3-031-21014-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21014-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21013-6

  • Online ISBN: 978-3-031-21014-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics