Skip to main content

Advertisement

Log in

Fuzzy simulation of European option pricing using mixed fractional Brownian motion

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Financial pricing models have great impact on the world of high finance as they enable financial experts to predict the dynamics of underlying asset. Over the last few decades, there has been a lot of competitions among financial researches to establish the most efficient pricing model for different options. This study aims to propose an option valuation model based on mixed fractional Brownian motion and to show how it can efficiently be used as a financial predictive model. In fact, this option evaluation model employs the fuzzy simulation method to estimate a European call option under the condition that the interest rates (domestic and foreign rates) and the volatility are random fuzzy variables. Furthermore, the performance of the proposed model is validated by solving some experimental problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Cheridito P (2001) Mixed fractional Brownian motion. Bernoulli 7(6):913–934

    Article  MathSciNet  MATH  Google Scholar 

  • Cheridito P (2003) Arbitrage in fractional Brownian motion models. Finance Stoch 7(4):533–553

    Article  MathSciNet  MATH  Google Scholar 

  • Coeurjolly J (2000) Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study. J Stat Softw 5(7):1–53

    Article  Google Scholar 

  • El-Nouty C (2003) The fractional mixed fractional Brownian motion. Stat Probab Lett 65(2):111–120

    Article  MathSciNet  MATH  Google Scholar 

  • Kroese D, Botev Z (2015) Spatial process simulation, stochastic geometry, spatial statistics and random fields. Springer, Berlin, pp 369–404

    Book  MATH  Google Scholar 

  • Lee C, Tzeng CH, Wang SY (2005) A new application of fuzzy set theory to the Black–Scholes option pricing model. Expert Syst Appl 29(2):330–342

    Article  Google Scholar 

  • Liu B (2004) Uncertainty theory. Springer, Berlin

    Book  Google Scholar 

  • Liu B (2007) Uncertainty theory, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Liu B, Liu Y (2002) Expected value of fuzzy variable and fuzzy expected value models. IEEE Trans Fuzzy Syst 10(4):445–450

    Article  Google Scholar 

  • Liu Y, Liu B (2003) Expected value operator of random fuzzy variable and random fuzzy expected value models. Int J Uncertain Fuzziness Knowl Based Syst 11(2):195–215

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Y, Liu B (2003) Fuzzy random variables: a scalar expected value operator. Fuzzy Optim Decis Making 2(2):143–160

    Article  MathSciNet  Google Scholar 

  • Liu Y, Zhang W, Wang J (2016) Multi-period cardinality constrained portfolio selection models with interval coefficients. Ann Oper Res 244(2):545–569

    Article  MathSciNet  MATH  Google Scholar 

  • Lo A (1991) Long-term memory in stock market prices. Econometrica 59(5):1279–1313

    Article  MATH  Google Scholar 

  • Mandelbrot B, Van Ness J (1968) Fractional Brownian motions, fractional noises and applications. Siam Rev 10(4):422–437

    Article  MathSciNet  MATH  Google Scholar 

  • Mantegna R, Stanley H (1996) Turbulence and financial markets. Nature 38:587–588

    Article  Google Scholar 

  • Mudzimbabwe W, Patidar K, Witbooi P (2012) A reliable numerical method to price arithmetic Asian options. Appl Math Comput 218(22):10934–10942

    MathSciNet  MATH  Google Scholar 

  • Mishura Y (2008) Stochastic calculus for fractional Brownian motions and related processes. Springer, Berlin

    Book  MATH  Google Scholar 

  • Muzzioli S, Reynaerts H (2008) American option pricing with imprecise risk-neutral probabilities. Int J Approx Reason 49(1):140–147

    Article  MATH  Google Scholar 

  • Prakasa Rao B (2016) Pricing geometric Asian power options under mixed fractional Brownian motion environment. Physica A Physica A Stat Mech Appl 446(15):92–99

    Article  MathSciNet  MATH  Google Scholar 

  • Rogers L (1997) Arbitrage with fractional Brownian motion. Math Finance 7(1):95–105

    Article  MathSciNet  MATH  Google Scholar 

  • Thiagarajah K, Appadoo S, Thavaneswaran A (2007) Option valuation model with adaptive fuzzy numbers. Comput Math Appl 53(5):831–841

    Article  MathSciNet  MATH  Google Scholar 

  • Willinger W, Taqqu M, Teverovsky V (1999) Stock market prices and long-range dependence. Finance Stoch 3(1):1–13

    Article  MATH  Google Scholar 

  • Wu H (2004) Pricing European options based on the fuzzy pattern of Black–Scholes formula. Comput Oper Res 31(7):1069–1081

    Article  MATH  Google Scholar 

  • Wu H (2005) European option pricing under fuzzy environment. Int J Intell Syst 20(1):89–102

    Article  MATH  Google Scholar 

  • Wu H (2007) Using fuzzy sets theory and Black–Scholes formula to generate pricing boundaries of European options. Appl Math Comput 185(1):136–146

    MathSciNet  MATH  Google Scholar 

  • Xiao W, Zhang W, Zhang X (2012) Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm. Physica A Stat Mech Appl 391(24):6418–6431

    Article  MathSciNet  Google Scholar 

  • Yoshida Y (2002) Optimal stopping models in a stochastic and fuzzy environment. Inf Sci 142(1):89–101

    Article  MathSciNet  MATH  Google Scholar 

  • Yoshida Y (2003) The valuation of European options in uncertain environment. Eur J Oper Res 145(1):221–229

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang X, Xiao W (2017) Arbitrage with fractional Gaussian processes. Physica A Stat Mech Appl 471:620–628

    Article  MathSciNet  MATH  Google Scholar 

  • Zili M (2006) On the mixed fractional Brownian motion. J Appl Math Stoch Anal 2006:1–9

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Ghasemalipour.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemalipour, S., Fathi-Vajargah, B. Fuzzy simulation of European option pricing using mixed fractional Brownian motion. Soft Comput 23, 13205–13213 (2019). https://doi.org/10.1007/s00500-019-03862-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-019-03862-2

Keywords

Navigation