Skip to main content
Log in

Existence of Positive Solutions of a Fractional Dynamic Equation Involving Integral Boundary Conditions on Time Scales

  • Research Paper
  • Published:
Iranian Journal of Science Aims and scope Submit manuscript

Abstract

The existence and uniqueness of positive solutions to a fractional dynamic equation involving integral boundary conditions on time scale are examined using the Banach fixed point theorem and Schauder’s fixed point theorem. The existence of the proposed dynamic equation has been determined using the Caputo nabla derivative operator (Caputo derivative on time scale in the nabla sense), the upper and lower solution approach, and the characteristics of the Green’s function on time scales. Further, some appropriate examples has been given to demonstrate the implementation of theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas MI (2022) Positive solutions of boundary value problems for fractional differential equations involving the generalized proportional derivatives. Acta Math Univ Comenian 91(1):39–51

    MathSciNet  Google Scholar 

  • Abdo MS, Wahash HA, Panchal SK (2018) Positive solution of a fractional differential equation with integral boundary conditions. J Appl Math Comput Mech 17(3):5–15

    Article  MathSciNet  Google Scholar 

  • Agarwal RP, O’Regan D (2001) Nonlinear boundary value problems on time scales. Nonlinear Anal Theory Methods Appl 44(4):527–535

    Article  MathSciNet  Google Scholar 

  • Agarwal R, Bohner M, O’Regan D, Peterson A (2002) Dynamic equations on time scales: a survey. J Comput Appl Math 141(1–2):1–26

    Article  MathSciNet  Google Scholar 

  • Agarwal RP, Jleli M, Samet B (2021) An investigation of an integral equation involving convex-concave nonlinearities. Mathematics 9(19):2372

    Article  Google Scholar 

  • Anastassiou GA (2010) Foundations of nabla fractional calculus on time scales and inequalities. Comput Math Appl 59(12):3750–3762

    Article  MathSciNet  Google Scholar 

  • Alabedalhadi M, Al-Smadi M, Al-Omari S, Baleanu D, Momani S (2020) Structure of optical soliton solution for nonliear resonant space-time Schrödinger equation in conformable sense with full nonlinearity term. Phys Scr 95(10):105215

    Article  Google Scholar 

  • Al-Smadi M (2021) Fractional residual series for conformable time-fractional Sawada-Kotera-Ito, Lax, and Kaup-Kupershmidt equations of seventh order. Math Methods Appl Sci 2021:1–22. https://doi.org/10.1002/mma.7507

    Article  Google Scholar 

  • Al-Smadi M, Arqub OA (2019) Computational algorithm for solving Fredholm time-fractional partial integrodifferential equations of Dirichlet functions type with error estimates. Appl Math Comput 342:280–294

    MathSciNet  Google Scholar 

  • Bai Z, Lü H (2005) Positive solutions for boundary value problem of nonlinear fractional differential equation. J Math Anal Appl 311(2):495–505

    Article  MathSciNet  Google Scholar 

  • Benchohra M, Ouaar F (2010) Existence results for nonlinear fractional differential equations with integral boundary conditions. Bull Math Anal Appl 2(2):7–15

    MathSciNet  Google Scholar 

  • Benkhettou N, Hammoudi A, Torres DF (2016) Existence and uniqueness of solution for a fractional Riemann–Liouville initial value problem on time scales. J King Saud Univ Sci 28(1):87–92

    Article  Google Scholar 

  • Bohner M, Peterson A (2003) Advances in dynamic equations on time scales. Birkhäuser, Boston, New York

    Book  Google Scholar 

  • Bohner M, Peterson A (2001) Dynamic equations on time scales: an introduction with applications. Springer, Berlin

    Book  Google Scholar 

  • Bohner M, Tunç O, Tunç C (2021) Qualitative analysis of caputo fractional integro-differential equations with constant delays. Comput Appl Math. https://doi.org/10.1007/s40314-021-01595-3

    Article  MathSciNet  Google Scholar 

  • Chauhan HV, Singh B, Tunç C, Tunç O (2022). On the existence of solutions of non-linear 2D Volterra integral equations in a Banach space. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 116(3):101

  • Dogan A (2020) On the existence of positive solutions for the time-scale dynamic equations on infinite intervals. In: Differential and difference equations with applications: ICDDEA 2019, Lisbon, Portugal, July 1–5 4. Springer, pp 1–10

  • Feng M, Zhang X, Li X, Ge W (2009) Necessary and sufficient conditions for the existence of positive solution for singular boundary value problems on time scales. Adv Differ Equ 2009:1–14

    Article  MathSciNet  Google Scholar 

  • Gogoi B, Saha UK, Hazarika B, Torres DF, Ahmad H (2021) Nabla fractional derivative and fractional integral on time scales. Axioms 10(4):317

    Article  Google Scholar 

  • Georgiev SG (2018) Fractional dynamic calculus and fractional dynamic equations on time scales. Springer, Berlin

    Book  Google Scholar 

  • Goodrich CS (2011) Existence of a positive solution to a system of discrete fractional boundary value problems. Appl Math Comput 217(9):4740–4753

    MathSciNet  Google Scholar 

  • Kaufmann ER, Raffoul YN (2005) Positive solutions for a nonlinear functional dynamic equation on a time scale. Nonlinear Anal Theory Methods Appl 62(7):1267–1276

    Article  MathSciNet  Google Scholar 

  • Kumar V, Malik M (2019) Existence and stability of fractional integro differential equation with non-instantaneous integrable impulses and periodic boundary condition on time scales. J King Saud Univ Sci 31(4):1311–1317

    Article  Google Scholar 

  • Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, London

    Google Scholar 

  • Murad SA, Hadid S (2012) Existence and uniqueness theorem for fractional differential equation with integral boundary condition. J Frac Calc Appl 3(6):1–9

    Google Scholar 

  • Podlubny I (1999) Fractional differential equation. Academic Press, New York

    Google Scholar 

  • Redhwan S, Shaikh SL (2021) Implicit fractional differential equation with nonlocal integral-multipoint boundary conditions in the frame of Hilfer fractional derivative. J Math Anal Model 2(1):62–71

    Article  Google Scholar 

  • Sathiyanathan K, Krishnaveni V (2017) Nonlinear implicit caputo fractional differential equations with integral boundary conditions in banach space. Glob J Pure Appl Math 13:3895–3907

    Google Scholar 

  • Slavík A (2012) Dynamic equations on time scales and generalized ordinary differential equations. J Math Anal Appl 385(1):534–550

    Article  MathSciNet  Google Scholar 

  • Tikare S (2021) Nonlocal initial value problems for first-order dynamic equations on time scales. Appl Math E-Notes 21:410–420

    MathSciNet  Google Scholar 

  • Tikare S, Tisdell CC (2020) Nonlinear dynamic equations on time scales with impulses and nonlocal conditions. J Class Anal 16(2):125–140

    Article  MathSciNet  Google Scholar 

  • Tikare S, Bohner M, Hazarika B, Agarwal RP (2023). Dynamic local and nonlocal initial value problems in Banach spaces. Rendiconti del Circolo Matematico di Palermo Series 2, 72(1):467–482

  • Torres DF (2021) Cauchy’s formula on nonempty closed sets and a new notion of Riemann–Liouville fractional integral on time scales. Appl Math Lett 121:107407

    Article  MathSciNet  Google Scholar 

  • Tunç C, Tunç O (2021). On the stability, integrability and boundedness analyses of systems of integro-differential equations with time-delay retardation. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 115(3):115

  • Tunç O, Tunç C (2023). Solution estimates to Caputo proportional fractional derivative delay integro-differential equations. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 117(1):12

  • Wu L, Zhu J (2013) Fractional Cauchy problem with Riemann–Liouville derivative on time scales. In: Abstract and applied analysis, vol 2013. Hindawi

  • Yan RA, Sun SR, Han ZL (2016a) Existence of solutions of boundary value problems for Caputo fractional differential equations on time scales. Bull Iran Math Soc 42(2):247–262

    MathSciNet  Google Scholar 

  • Yan RA, Sun SR, Han ZL (2016b) Existence of solutions of boundary value problems for Caputo fractional differential equations on time scales. Bull Iran Math Soc 42(2):247–262

    MathSciNet  Google Scholar 

  • Zhao DF, You XX (2016) A new fractional derivative on time scales. Adv Appl Math Anal 11(1):1–9

    MathSciNet  Google Scholar 

  • Zhao D, You X, Cheng J (2016) On delta alpha derivative on time scales. J Chungcheong Math Soc 29(2):255–265

    Article  MathSciNet  Google Scholar 

  • Zhong W, Wang L (2018) Positive solutions of conformable fractional differential equations with integral boundary conditions. Bound Value Prob 2018:1–12

    MathSciNet  Google Scholar 

  • Zhu J, Wu L (2015) Fractional Cauchy problem with Caputo nabla derivative on time scales. In: Abstract and applied analysis, vol 2015. Hindawi

Download references

Funding

Not applicable, the research is not supported by any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equal contribution for the preparation of the article.

Corresponding author

Correspondence to Bipan Hazarika.

Ethics declarations

Conflict of Interest

The authors declare that the article is free from Conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogoi, B., Saha, U.K., Hazarika, B. et al. Existence of Positive Solutions of a Fractional Dynamic Equation Involving Integral Boundary Conditions on Time Scales. Iran J Sci 48, 1463–1472 (2024). https://doi.org/10.1007/s40995-024-01691-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-024-01691-z

Keywords

Mathematics Subject Classification

Navigation