Abstract
Statistical analysis of an anatomical structure composed of multiple objects is useful for many computational anatomy tasks as registration or classification. As rigid transformations do not belong to an Euclidean space, conventional mean and covariance formulas could not be applied to study the movement of each object with respect to the others. Some tools from Riemannian geometry are used instead, requiring the definition of a metric. We show that common metrics are not intuitive in the case of an object with an elongated shape and we propose a new one based on displacements of all the points of the structure. We describe the method to study the pose variability of a multi-object structure with this new metric. It is then applied to the statistical analysis of the rib cage which is composed of 24 elongated bones.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)
Zheng, G., Gollmer, S., Schumann, S., Dong, X., Feilkas, T., Ballester, M.A.G.: A 2D/3D correspondence building method for reconstruction of a patient-specific 3d bone surface model using point distribution models and calibrated X-ray images. Med. Image Anal. 13(6), 883–899 (2009)
Rasoulian, A., Rohling, R., Abolmaesumi, P.: Lumbar spine segmentation using a statistical multi-vertebrae anatomical shape+pose model. IEEE Trans. Med. Imaging 32(10), 1890–1900 (2013)
Pennec, X.: Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements. J. Math. Imaging Vis. 25(1), 127–154 (2006)
Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)
Sommer, S., Lauze, F., Nielsen, M.: Optimization over geodesics for exact principal geodesic analysis. Adv. Comput. Math. 40(2), 283–313 (2014)
Bossa, M.N., Olmos, S.: Statistical model of similarity transformations: building a multi-object pose. In: 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW 2006), pp. 59–59. IEEE (2006)
Anas, E.M.A., Rasoulian, A., John, P.S., Pichora, D., Rohling, R., Abolmaesumi, P.: A statistical shape+ pose model for segmentation of wrist CT images. In: SPIE Medical Imaging, International Society for Optics and Photonics, pp. 90340T–90340T (2014)
Boisvert, J., Cheriet, F., Pennec, X., Labelle, H., Ayache, N.: Geometric variability of the scoliotic spine using statistics on articulated shape models. IEEE Trans. Med. Imaging 27(4), 557–568 (2008)
Said, S., Courty, N., Le Bihan, N., Sangwine, S.J.: Exact principal geodesic analysis for data on SO (3). In: Signal Processing Conference, 2007 15th European, pp. 1701–1705. IEEE (2007)
Bindernagel, M., Kainmueller, D., Seim, H., Lamecker, H., Zachow, S., Hege, H.C.: An articulated statistical shape model of the human knee. In: Handels, H., Ehrhardt, J., Deserno, T., Meinzer, H.P., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2011, pp. 59–63. Springer, Heidelberg (2011)
Goodall, C.: Procrustes methods in the statistical analysis of shape. J. Roy. Stat. Soc. Ser. B (Methodol.) 53, 285–339 (1991)
Pennec, X.: Barycentric subspaces and affine spans in manifolds. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2015. LNCS, vol. 9389, pp. 12–21. Springer, Cham (2015). doi:10.1007/978-3-319-25040-3_2
Gilles, B., Revéret, L., Pai, D.K.: Creating and animating subject-specific anatomical models. Comput. Graph. Forum 29(8), 2340–2351 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Moreau, B., Gilles, B., Jolivet, E., Petit, P., Subsol, G. (2017). A New Metric for Statistical Analysis of Rigid Transformations: Application to the Rib Cage. In: Cardoso, M., et al. Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics. GRAIL MICGen MFCA 2017 2017 2017. Lecture Notes in Computer Science(), vol 10551. Springer, Cham. https://doi.org/10.1007/978-3-319-67675-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-67675-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67674-6
Online ISBN: 978-3-319-67675-3
eBook Packages: Computer ScienceComputer Science (R0)