Skip to main content

A New Metric for Statistical Analysis of Rigid Transformations: Application to the Rib Cage

  • Conference paper
  • First Online:
Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics (GRAIL 2017, MICGen 2017, MFCA 2017)

Abstract

Statistical analysis of an anatomical structure composed of multiple objects is useful for many computational anatomy tasks as registration or classification. As rigid transformations do not belong to an Euclidean space, conventional mean and covariance formulas could not be applied to study the movement of each object with respect to the others. Some tools from Riemannian geometry are used instead, requiring the definition of a metric. We show that common metrics are not intuitive in the case of an object with an elongated shape and we propose a new one based on displacements of all the points of the structure. We describe the method to study the pose variability of a multi-object structure with this new metric. It is then applied to the statistical analysis of the rib cage which is composed of 24 elongated bones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  2. Zheng, G., Gollmer, S., Schumann, S., Dong, X., Feilkas, T., Ballester, M.A.G.: A 2D/3D correspondence building method for reconstruction of a patient-specific 3d bone surface model using point distribution models and calibrated X-ray images. Med. Image Anal. 13(6), 883–899 (2009)

    Article  Google Scholar 

  3. Rasoulian, A., Rohling, R., Abolmaesumi, P.: Lumbar spine segmentation using a statistical multi-vertebrae anatomical shape+pose model. IEEE Trans. Med. Imaging 32(10), 1890–1900 (2013)

    Article  Google Scholar 

  4. Pennec, X.: Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements. J. Math. Imaging Vis. 25(1), 127–154 (2006)

    Article  MathSciNet  Google Scholar 

  5. Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)

    Article  Google Scholar 

  6. Sommer, S., Lauze, F., Nielsen, M.: Optimization over geodesics for exact principal geodesic analysis. Adv. Comput. Math. 40(2), 283–313 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bossa, M.N., Olmos, S.: Statistical model of similarity transformations: building a multi-object pose. In: 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW 2006), pp. 59–59. IEEE (2006)

    Google Scholar 

  8. Anas, E.M.A., Rasoulian, A., John, P.S., Pichora, D., Rohling, R., Abolmaesumi, P.: A statistical shape+ pose model for segmentation of wrist CT images. In: SPIE Medical Imaging, International Society for Optics and Photonics, pp. 90340T–90340T (2014)

    Google Scholar 

  9. Boisvert, J., Cheriet, F., Pennec, X., Labelle, H., Ayache, N.: Geometric variability of the scoliotic spine using statistics on articulated shape models. IEEE Trans. Med. Imaging 27(4), 557–568 (2008)

    Article  Google Scholar 

  10. Said, S., Courty, N., Le Bihan, N., Sangwine, S.J.: Exact principal geodesic analysis for data on SO (3). In: Signal Processing Conference, 2007 15th European, pp. 1701–1705. IEEE (2007)

    Google Scholar 

  11. Bindernagel, M., Kainmueller, D., Seim, H., Lamecker, H., Zachow, S., Hege, H.C.: An articulated statistical shape model of the human knee. In: Handels, H., Ehrhardt, J., Deserno, T., Meinzer, H.P., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2011, pp. 59–63. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Goodall, C.: Procrustes methods in the statistical analysis of shape. J. Roy. Stat. Soc. Ser. B (Methodol.) 53, 285–339 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Pennec, X.: Barycentric subspaces and affine spans in manifolds. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2015. LNCS, vol. 9389, pp. 12–21. Springer, Cham (2015). doi:10.1007/978-3-319-25040-3_2

    Chapter  Google Scholar 

  14. Gilles, B., Revéret, L., Pai, D.K.: Creating and animating subject-specific anatomical models. Comput. Graph. Forum 29(8), 2340–2351 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baptiste Moreau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Moreau, B., Gilles, B., Jolivet, E., Petit, P., Subsol, G. (2017). A New Metric for Statistical Analysis of Rigid Transformations: Application to the Rib Cage. In: Cardoso, M., et al. Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics. GRAIL MICGen MFCA 2017 2017 2017. Lecture Notes in Computer Science(), vol 10551. Springer, Cham. https://doi.org/10.1007/978-3-319-67675-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67675-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67674-6

  • Online ISBN: 978-3-319-67675-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics